a hands-on approach

Arthur Luehrmann
Herbert Peckham

Special Edition
| for Apple Computer

A Hands-On Approach

APPL
PASCAL

A Hands-On Approach

ARTHUR LUEHRMANN

University of California, Berkeley

HERBERT PECKHAM

Gavilan College

McGraw-Hill Book Company

New York St Louis San Francisco Auckland Bogotd Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi Panama
Paris Sé&o Paulo Singapore Syndey Tokyo Toronto

APPLE PASCAL™: A Hands-On Approach
Special Edition for Apple Computer

Copyright © 1981 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permit-
ted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in
any form or by any means, or stored in a data base or re-

trieval system, without the prior written permission of the
publisher.

1234567890 FGFG 8987654321
ISBN 0-07-049173-9
Library of Congress Catalog Card No.: 81-83100

This book was set in Megaron by Instant Type and
Graphics, Monterey, California. The editor was Charles E.
Stewart; the production supervisor was Joe Campanella.
The cover was designed by Oona Johnson.

Fairfield Graphics was printer and binder.

" AR,

ACKNOWLEDGMENTS

The Apple Pascal™ system incorporates
UCSD Pascal™ and Apple® extensions for
graphics, sound, paddles, and other func-
tions. UCSD Pascal was developed largely by
the Institute for Information Science at the
University of California, San Diego, under the

"direction of Kenneth L. Bowles.

“Apple’” and “Apple Pascal” are trademarks
of Apple Computer Inc. “Apple” is a regis-
tered trademark of that company. “UCSD Pas-
cal” is a trademark of the Regents of the Uni-
versity of California. Unauthorized use of
these trademarks is contrary to the laws of the
State of California or of the Federal Govern-
ment.

This book is a tutorial guide to Apple Pascal,
not a formal specification of the software as
delivered to the buyer now or in future soft-
ware revisions. Apple Computer Inc. makes no
warranties with respect to this book or to its
accuracy in describing any version of the
Apple Pascal software product.

CONTENTS

PREFACE Xiii

INTRODUCTION 1
Why this book? 1
Why Pascal? 2
Why computers? 6
How to use this book 7

SESSION 1. GETTING STARTED 9
1-1 Booting up Pascal 11
1-2 The COMMAND prompt line 12
1-3 Traveling around the system 13
1-4 More than meets the eye 15

SESSION 2. TYPING IN PROGRAMS — THE EDITOR 19
2-1 A warm-up exercise 19

2 Entering the EDITOR 20

3 Typing in new text 22

4 Moving inserted text into the workspace 23

-5 The RESET key 23

6 Moving the workspace to diskette 24

7 An overview of editing 27

SESSION 3. WRITING, RUNNING, AND CHANGING PROGRAMS 33
3-1 Clearing the workfile 34
3-2 Entering PROGRAM TINY 35
3-3 Running PROGRAM TINY 36
3-4 Changing the program 38
3-5 Running the changed program 40

vii

viii CONTENTS
CONTENTS ix

3-6 Dealing with typing errors 41)
3-7 Text lines in Pascal programs 42 7-8 Counting Pasca; statements 138
3-8 WRITE and WRITELN 43 ;—?0 Sglls;zfstt: 114§
3-9 About those semi o
emicolons 45 7-11 TURTLEGRAPHICS and INITTURTLE 143

7-12 Making your own graphic procedures 145
SESSION 4. GENERATING SOUND 55

4-1 A short revie
4-2 Generating's\gund % 56 SESSION 8. BRANCHING STATEMENTS: IF AND CASE 151
4-3 Another way t 8-1 A simple two-way branch 152
4-4 The th yo mgke kb same sound 58 8-2 Boolean variables and functions 154
ree properties of variables 62 READ and READLN 156

4-5 Inputting values from outside th

4-6 The FOR statement 67 program o
4-7 Grammar rules for the FOR statement 69

4-8 Refining the program 70

4-9 Storing programs on a separate diskette 72
4-10 Recalling programs from a separate diskette 74

3
4 The semicolon bug 157

5 Nested IF statements 158

6 The abbreviated-IF bug 160

7 Another approach to multiway branches 163
8 Grammar rules for the IF statement 165

9 The READ and READLN problem 167

10 The CASE statement 169
11 Grammar rules for the CASE statement 170
1

SESSION 5. INVENTING NEW WORDS: PROCEDURES 81
2 A graphic application 171

5-1 Starting up 82
5-2 Duplicating blocks of text 83

8-
8-
8-
8-
8-
8-
8-
8-
8-
8-

53 -
5.4 gﬁggg"egg,‘gwp:;g;d;mes * SESSION 9. STRING VARIABLES AND WHILE LOOPS 181
5-5 Parameters. local) 9-1 Getting started with strings 181
56 Proosdures 2o renahopal variables 82 9-2 The LENGTH function 183
5-7 Grammar rules ch:r pr:é?e:jsfr:sng 9796 9-3 Making long strings out of short ones 185
) 9-4 Locating one string in another 188
9-5 Extracting pieces of strings 190
SESSION 6. MORE INVENTED WORDS: FUNCTIONS 107 9-6 Eliminating pieces of strings 191
6-1 Random numbers 107 9-7 Combining string operations 192
6-2 Think of a number from 1to 10 109 9-8 Miscellaneous facts about strings 195
6-3 Building a better function 111 9-9 A word processing program 197
6-4 The form of the function block 111 9-10 Grammar rules for the WHILE statement 201
g-s Defining FUNCTION RND 113
o :L%%;amcri:'”eme”‘s 114 SESSION 10. NUMBER TYPES AND ARITHMETIC 209
68 Filing ?/ou.?r T:n:: to your program 116 10-1 How big and how small? 209
6-9 More aboutpth egED"I‘T%”;V 111;8 10-2 The uninitialized-variable bug 215
10-3 Arithmetic with integers 216
10-4 Arithmetic with long integers 221
SESSION 7. DRAWING PICTURES ‘129 10-5 Arithmetic with real numbers 222
7-1 Paddle sketch 129 10-6 Some mathematical functions 226

10-7 An application of real numbers 227
10-8 One plus one isn’t always two 228
10-9 Interactions between numeric types 230

7-2 Drawing in colors 132
7-3 A new Pascal statement: the REPEAT loop 132
7-4 Invisible lines and background colors 134
;-g Random sketching 135
-6 Loops insi
e 'eg:(;r?s':giSoefrl-(;ﬁglsneerl‘]n:}; 137 SESSION 11. SCALAR DATA TYPES AND SETS 237
11-1 White, orange, blue: what are they? 237

X CONTENTS

11-2 Spelling rules for constants 240

11-3 Scalar data types 241

11-4 Creating new scalar data types 247
11-5 Grammar rules for scalar data types 251
11-6 Sets of scalar data 253

SESSION 12. ARRAYS 267
12-1 A list of words 268
12-2 Grammar rules for array variables 271
12-3 Alphabetizing a list of words 274
12-4 Top-down design of a card game 280
12-5 CARDGAME — filling in the details 282
12-6 Arrays as variables and parameters 289
12-7 Value parameters and reference parameters 291

SESSION 13. RECORDS AND FILES 301
13-1 Defining a variable of type RECORD 301
13-2 Grammar rules for the RECORD data type 306
13-3 Defining a variable of type FILE 311
13-4 Getting data out of disk files 315
13-5 File input using the EOF function 317
13-6 Grammar rules for the FILE data type 319
13-7 TEXT files, READ and WRITE 320
13-8 INTERACTIVE files, INPUT, OUTPUT and KEYBOARD
13-9 Removing files from a diskette 329

SESSION 14. RECURSION 335
14-1 Recursive arithmetic 335
14-2 Recursive pictures 339
14-3 Another recursive picture 341
14-4 Mutual recursion 345

WHERE DO YOU GO FROM HERE? 359

APPENDIXES
A. Getting started with a single disk drive 365
B. Getting started with a dual disk drive 371
C. Names, reserved words, and built-in names 377
D. Command structure of Apple Pascal 379
E. Size and quantity limits in Apple Pascal 383
F. ORD and CHR values of ASCII character set 387
G. Using two disk drives 391
H. Differences between Versions 1.0 and 1.1 of Apple Pascal

SOLUTIONS TO PROBLEMS

INDEX 421

COMPILER ERROR MESSAGES

399

429

CONTENTS xi

PREFACE

Our constant goal in writing this book has been to find asequence of compelling
activities for you, the reader, to carry out on your own computer in such a way that
you will come to “know” Pascal in much the same way thatyou came to “know” your
native language without being schooled in it. We have assumed that you begin by
knowing little of computers or computer languages; but we intend that, after you
complete the 14 Sessions and 30 to 40 hours of hands-on activities, you will have a
solid working knowledge of nearly all the vocabulary, grammar rules, and meanings
that make up Pascal.

If you are studying Pascal in aschool or college setting, the computer activitiesin
this book will give you the concrete experiences so essential for understanding the
rules and abstractions being presented in your classes. If you are out of school and
cannot or prefer not to enroll in a formal course in Pascal, these hands-on sessions
with a computer will allow you, at your own pace and under your own control, to
develop a substantial knowledge of the language.

We recognized from the outset that this kind of book had to be far freer of defects
than the average textbook. Since most of the learning takes place when you are
sitting before the computer carrying out the tasks suggested, possibly alone or at
some distance from any expert help, it was essential for us to be sure that the words
were clear, the programs letter perfect, and the basic strategy an effective one.

Throughout the writing, we have been most fortunate in finding over a dozen
individuals who were so frustrated in their previous attempts to learn Pascal that
they could be coaxed into using (and criticizing) the early drafts of the book. They
brought to the task a collection of highly developed skills in teaching, writing
textbooks, programming, thinking clearly, and bringing order to unruly sentences.
Alan Portis was a constant source of enthusiastic encouragement and good ideas.
Tim Aaronson, who has taught programming to young people for many years, was
especially sensitive to subtle misconceptions and misleading oversights. Victor
Jackson had a very sharp eye for inconsistencies and flawed programs. Martha
Luehrmann was absolutely tenacious in her complaints, usually justified, about
statements and explanations that were off the mark. And Elizabeth Weal, who by day
works in the Publications Department of Apple Computer, volunteered her critical
eye and corrective skills to the rough edges of our prose. We owe her a special debt.
Others who worked through the early drafts were Arthur Kessner, Harold Peters,
Robert Fuller, Dean Zollman, and Marvin Marcus.

xiii

xiv PREFACE

Thanks to the use of a word processing system from the beginning, we were able
to absorb criticism and suggested changes and shoot back revisions in rapid
succession. Some sessions went through as many as six major rewrites before all of
us were content. The program segments reproduced in this book were all printed
under computer control from disk files that had previously been executed. Finally,
the text was automatically composed on a Compugraphic photocomposition unit
from the final draft of the word-processor text files. We hope that these measures
have eliminated all but a few typographic errors, and that you will forgive those.

Arthur Luehrmann

Herbert Peckham

APPLE
PASCAL

A Hands-On Approach

INTRODUCTION

If you already own this book and have access to an Apple |l computer, then you
are probably eager to start learning to use Apple Pascal. In that case you should skip
most of this introduction except for the final section, “HOW TO USE THIS BOOK".

On the other hand, if you're in a shopper's frame of mind—trying to decide
whether or not this book is for you, or whether or not Pascal is for you, or whether or
not learning to use the computer is for you—then spending some time on the
introduction will be worthwhile. Our goal here is to explain a bit about the design
and intent of the book, to answer the question, “Why Pascal?”, and to say briefly why
learning to use computers is worth the effort of anyone who can read and write.

WHY THIS BOOK?

A fair question. There are a dozen or so books on programming in Pascal,
including an excellent treatise by the author of the language. Does the world really
need another one?)

It won't come as a surprise that we think so. Here are our reasons:

= None of the books we know of deal with the details of the learner’'s computer,
such as keytop labels, the system’s editor, and file system. A beginner needs
more help at first with these things than with anything else. Our goalin this book
is to teach you everything that you need to know in order to write, enter, and run
Pascal programs on your Apple computer system.

®m Most books are written by computer scientists who teach university courses.
These books feature college-level math, science, and business applications.
The same programming concepts can be illustrated in other application areas
accessible to more people: drawing pictures, working with text, or making
music. We do that.

= Most authors seem to be concerned with coverage of every minute detail and
subtle nuance of the language, as though theirs was the last book ever to be read
on the subject. We care more that beginners get safely off to agood start and less
about having the last word.

® Most existing Pascal books have the flavor of lectures. We think there is a need

for a book written for beginners who will learn by doing rather than by listening
and reading, and who will want to work at their own pace.

1

2 APPLE PASCAL

Our goal in this book is to guide you through a sequence of revealing
experiences in using Pascal for the purpose of communicating with your computer.
During the process of communication (and failure to communicate) you will learn
the underlying grammar of the language, just the way you learned most of English
grammar before going to school.

Don't try to sit back in a comfortable chair and just read this book through. It
won't work that way. Go instead to the desk or table where your Apple computer is
located, sit with the book open in your lap or next to the computer, and carry out all
the activities in each session.

WHY PASCAL?

If you are already sold on Pascal, then the question will not be a burning one for
youand youshould probably skip this section. On the other hand, if your response is
“Pascal who?”, then better read on.

Communicating with a computer means formulating your problem and writing
your instructions in a computer language. Over the years people have invented
more than a hundred different computer languages, and Pascal is the name of one of
them. It is a relative newcomer, defined in 1970 by the Swiss computer scientist
Niklaus Wirth. Other popular languages go by the names Basic, Fortran, Cobol,
Algol, PL/1, and APL.

At present more people know how to program in Basic than in any other
language (thanks to the sale of nearly a million Basic-speaking computers in the
past two years). Nevertheless, more lines of program statements have been written
in Cobol, astandard language for business applications, than in any other language.
The great majority of scientific and engineering programs are written in Fortran, one
of the oldest computer languages. Applied mathematicians are especially fond of
APL. Computer scientists use Algol as a standard for publishing programs in some
journals. When IBM Inc. announced PL/1, they advertised it as a language that
would quickly replace Fortran and Cobol by doing everything they do and more.

So, why Pascal? A frivolous, but not totally inappropriate answer would be “Why
not?” Despite often vehement arguments by defenders of one language and
attackers of another, no one of the common computer languages is deeply different
from the others. Each one has a vocabulary of about a hundred or so words and
symbols. Each one has a strict grammar, well defined and with no exceptions. Most
“sentences” in any one language translate easily and directly into similar
“sentences” in another language. All computer languages have about the same
“expressive” range. All can be learned in a week, and experienced computerists
usually know two or three languages well. So why not Pascal, or any other popular
language? As the Chinese proverb goes, “Let a hundred flowers bloom...”

We are not entirely unsympathetic towards that attitude. In our view, learning to
communicate with the computer is the important thing, whatever language is used.
Norare we much impressed by people who claim that this “good” language will drive
out that “bad” language. All languages are human inventions, but they take onallife
and cultural identity of their own. English is demonstrably inferior to Esperanto, but
Shakespeare and Byron managed to say some powerful things in English, while
hardly anybody says anything in Esperanto.

INTRODUCTION 3

Actually, we think these arguments should be turned around. tSin'(t:E dirf"f:rﬁ\r;cﬁz
’ fairly small, why not start out with o
petween computer languages are) e s
i d to grow with? It happens .
reasonably easy to pick up and goo ' By Tor. cashing
i I, were designed originally for
common languages, Basic and Pa;ca, ' o eret e
i d choices for beginners, though in
computing. They are both goo ' i e
ici i ly due to language design and p
cismuch easier to get started with, part € L
?oatstlwe very interactive way it is usually imp|emelnted. Ifygu boot up” your Apple Il
with the BASICS disk, you can type the following one-line program

FRINT 238 + 429

press the RETURN key and immediately see the program run, with the result “667
inted on your screen. . ‘

pl'mPascaI gn the other hand is a bit slower to getinto and rgqu1re§ more know|edge

of both thé language and the computer’s facilities for entgrmg, editing, gnd runlqlng

programs. The Pascal program to add 238 + 429 and print the answer is four lines

long:

FROGRAM ALODITIONS
BEGIN

WRITELN (238 + 429)
END.

; P itor” Then
i " " Then you have to “quit the editor”. .
To type it, you have to “enter the editor . .
you)tl12ve toy“run the program”. If you make a typing error whep typing a stTtemzr;trllz
a Basic program, you are told so and may simply ret.ype the line. In Pasca”):o:ditor
discover the error until you run the program. To fix it, you mqst return to the ,
i i again.
the change, quit the editor, and run the program . R
malé% Basic wi%s, ctlands down, on ease of getting startgd and of quick tlrlal a::d
error programming. Trouble comes, however, when Basic prqgr?msltr?s: g;\?e na
i ificati ne other than the original au .
require modifications, perhaps by someon: O ot s
’ : lity by human readers. Rep
one of Pascal’s greatest strengths: legibi _ odu nare
i i t simulates the roll of dice in a crap
Basic and Pascal versions of a program tha : . !
ggeme Without worrying too much about the details, decide for yourself which
version looks more like it might actually represent a craps game.

4 APPLE PASCAL
INTRODUCTION 5

Applesoft Basic Program)
Apple Pascal Program

100 DEF FNR (X) = INT (1 + & % RND ¢ X
PUB LR B = MR (1) X)) + INT (1 + & % RNDN (X))
120 FRINT "YOU ROLLED A *; R1

ROGRAM DICEGAME S

130 IF K1 = 7 THEN 150 ;
140 IF K1 <% 11 THEN 170 USES
150 FRINT *YOU WIN® AFFLESTUFF§
160 GOTO 110
170 IF R1 = 2 THEN 200 CONST
180 IF K1 = 3 THEN 200 HEILFREEZESOVER = FALSE}
190 IF R1 =% 12 THEN 220 ‘
200 FRINT *YOU LOSE® VAR
210 GOTO 110 DICEs FOINT ¢ INTEGER:
220 LET R2 = FNR (1)
230 FRINT *NEXT ROLL IS *; R2 FROCEDURE ROLLEM (VAR TOSS $: INTEGER)S$
240 IF R2 = R1 THEN 150

7 THEN 200 BEGIN

TOSS = RANDOM MOD 6 + 13

250 IF R2 =
260 GOTO 220

270 END TOSS = TOSS + RANDOM MOD 6 + 17
" L

WRITELN (‘YOU ROLLEDN A 7y TOSS)

REGIN
j REFEAT
‘ ROLLEM (DICE)S
CASE DICE OF
; Jy LL2
WRITELN (“YOU WIN’)3
i 2y 3y 1223
ah WRITELN (/YOU LOSE’)j
4y Sy b6y 8y 9y 102
I BEGIN
] FOINT $= DICEj
M REFEAT
! ROLLEM (DICE)
| UNTIL (DICE = FOINT) OR (DICE = 7)3}
il IF DICE = FOINT THEN
| WRITELN (/YOU WIN’)
i ELSE
i WRITELN (’/YOU LOSE’)
| END
END
UNTIL HELLFREEZESOVER
ENID.

Unless you're already a Basic expert, you probably had a hard time seeing any

g plan or design in what looks like line after line of similar text in the first version. By
| contrast, the text of the Pascal version divides into horizontal blocks of various
| kinds, with names such as CONST, VAR, and PROCEDURE. Furthermore, Pascal
| allows the author to use indentation to clarify further the plan of the program. Most
versions of Basic today treat indentation as a mistake and proceed to remove itfrom

| the program.

6 APPLE PASCAL

Basic’s problem of illegibility and incomprehensibility increases drastically as a
program grows in size and complexity, and Pascal's edge widens quickly.
Experiments have shown that Pascal programmers are several times faster at
making changes and corrections to larger programs than are people using
unstructured languages such as Basic and Fortran.

There is another reason why Pascal is agood first language to learn. As a relative
newcomer to the family of computer languages, it benefits from a lot of deep
thinking that went on among computer scientists as to why programs written in the
languages available in the early 1960’s were so hard to prove to be correct. The result
of their studies was a set of language requirements that make it possible merely by a
careful reading of a program, block by block, to know if it will work. Pascal was
among the first attempts to produce a practical language that also embodies many
of these research results.

In a very real sense Pascal is a working model of modern thinking about certain
goals of cgmputer languages. Like all good models, it is being widely imitated. The
new American National Standards Institute (ANSI) Fortran standard includes some
of the same organizational structures found in Pascal. Work is nearing completion
on ANSI Basic, which also includes all these structures, as well as long variable
names, and named procedures. Among languages emerging today, it is fairly
accurate to describe Ada, the language soon to be required of all contracters who
\l;vant t,o do business with the U.S. Department of Defense, as an enhancement of

ascal.

Learmﬁg to program in Pascal, therefore, is a good way to become familiar with
language {deas that appear not just in Pascal but in some older and most new and
Zzgv/ylreV/sed languages. Your next language will be easier if you already know

cal.

Even so, italways pays to use the right tool forthe job; and for many jobs Basic on
a comp.uter such as the Apple Il is the right tool. Itis easy to getinto, gives you quick
error diagnoses, and is a cinch to edit and try again—just the things Pascal is
weakest at. Simple problems usually yield to a quick-and-dirty, trial-and-error
approach and-don't justify much planning. The trick, of course, is to know when that
approach. is likely to fail, so as to avoid it. Our rule of thumb is simple. If your
program is small enough to fit on your TV screen, stick with Basic. If it's bigger or if
it's probably going to grow bigger, switch to Pascal.

WHY COMPUTERS?

If thg question is irrelevant to you because you already know about computers
anq believe that they are important, then skip this section. Unless, of course, you
enjoy sermons to the faithful. If you have your doubts, however, read on. ’

Most everyone knows about the speed and accuracy of the modern electronic
computer, its ability to carry out long and tedious calculations exactly as instructed
and its growing visibility in the workplace, stores, schools, and even homes. Toda);
most people probably recognize that computers play a significant, even critical, role
in thelr routine affairs: commuting to work, buying groceries, receiving bills pa{ying
b|l|§ \A(lth checks or credit cards, makingairline or motel reservations, teIIingvtime on
a dlgltall watch, tuning a TV set, receiving “personalized” junk mail, using an
automatic telephone dialer, listening to a digital recording of music, \}vatching a

INTRODUCTION 7

videodisk TV recording, setting the time and temperature of a microwave oven or of
amodern home thermostat, and many other things. Not everyone is happy with what
some see as a blind dependency on the new technology; especially whenitor, more
frequently, its human operators and programmers make errors. But even critics
admit that the computer is a fixed part of life today.

Despite a general popuiar awareness of computers, remarkably few people
today are literate users of computers. It won’t come as a surprise, then, that most
people have missed something fundamental about computing: namely, that it is a
creative activity carried on by human beings. A computer does what it does because
some person told it not only what to do but how to do it. A person who knows how to
express thoughts in a computer language has a new way of talking, writing, and
thinking about the ideas that he or she wants to embody in the instructions to the
computer. And any time that you discover a new way to think about something, ora
new language for describing your thoughts and setting them down for a closer look,
then you have a new tool for solving problems. This is the main, usually overlooked
point about computing.

Actually, it isn’t terribly surprising that this point is missed by so many people.
The time we live in is in many ways like the first decades after the printing press was
invented, when nearly everyone except a small priesthood was illiterate. People
recognized that printing technology would make business and government
transactions and record keeping a lot easier, which in turn would have animpacton
daily life. Yet few people, even several centuries later, recognized that the main
effect would come when the entire public became literate and could use reading and
writing for personal satisfaction and gain.

The appearance of the inexpensive personal computer is like the appearance of
the printing press. In the public mind computer literacy still belongs to that small
priesthood who painfully acquired their skills in the service of large, cloistered
machines, unapproachable by ordinary laymen. Most otherwise educated people
today believe that whatever computer needs they have must be handled by speaking
in English to a member of the computer priesthood, who will translate their wishes
and prayers into computer language and then communicate them to the inscrutable
machine.

Of course, that is not the case; and millions of people today are discovering the
ease, rewards, and personal satisfaction of direct communication with and control
of acomputer. In fact, recent research shows that the main reason most people buy
a personal computer is not to putitto practical use but to learn to communicate with

it and to become computer literate. As their skills and understanding develop, they
discover uses that they could not have imagined in advance.

To conclude this sermon, you should learn computing for the same reason that
you learned to read, write, and to do math: because it is good for your mind.

HOW TO USE THIS BOOK

As we said before, this book is a carefully sequenced set of activities for you to
carry out at the keyboard of your computer. It will make very poor and probably
confusing reading if you treat it as a conventional textbook. You will find that rules,
explanations and summaries are present, but they all follow directly out of your
actual experiences at the keyboard.

8 APPLE PASCAL

Itisa gqod policy in the first five or six sessions not to stray very far from the path
we hgve Igld out for you, or to try to jump ahead in the book: if you do donﬁ be
surprised lf'you occasionally getinto situations that you may no’t be ready t’o handle
None of this will damage you or the computer, of course, and if worse comes td
worse,‘you can always turn off the power switch and start over.

While our main goal here is to have an inexperienced personsucceed in learning
Pascal, we have qot taken the easy way out and given you only atrivial subset of the
languagg. There is little point in learning Pascal if all you getoutofitare the feature
that are literal translations of other languages. Instead we introduce you quickl tcs)
procedure and function blocks, a variety of data types, and the main Pascal con¥r |
strgctures. Toward the latter half of the book you will find activities on programme?—
def!ned data types, arrays, sets, and records. While some of these are heavy-dut
topics, each one builds on your previous understanding and on speci1‘icy newy
corlmc'rc.ete experiences. If your learning comes out of steady progress throu h'these'
act|ymes, we believe you will be ready for each new concept or rule. Yet ev?an ifyo
\c’jv(ieltizsf]i::er Se;sion 8 or9or 10 that you know enough about Pascai for ;\ while 503
R parggtj;:ﬁg, a substantial understanding and will be able to write quite

As to the specifics of your particular computer system, we assume that you have
an Apple Il or App'le I Plu; computer, a Language System, a single disk drive, and
Apple Paspal Version 1.1 diskettes. If you have two disk drives, don't concludéthat
this bogk is not for you. You will need only a single drive for all activites here, but
every}hmg that you learn will carry over to a two-drive system. If you have Ver‘sio
1f(f) d|§kettes (also called UCSD Pascal Version I1.1) you may still use this booE
scgsgiv:tly.o\l(]ou Tthuld turn t_o Appendix H before doing each session, however, and
diSKettes'y rself with any differences that will show up when using the Version 1.0

SESSION

ONE

GETTING STARTED

First, a procedural note: this book is divided into sessions. Each session will give
you about two hours activities to do with your computer. You should plan to work
through a complete session at one time, without interruption, if possible. Atthe end
of each session you will find questions and problems. Itis a good idea to test your
understanding by working on a few of them.

Second, don't expect each topic to be covered fully in the session where you first
encounter it. Our goal at each point is to give you enough experience to be able to
communicate certain instructions to your computer successfully. As your
knowledge grows, we will cycle around to each topic several times, adding details
and qualifications to what you already know.

Finally, if your book is more than three feet from your computer, you are in
trouble. We will be continually asking you to do things with your computer. (When
we do that, we'll put the instructions in bold faced type.) There is little pointin trying
to read the book without carrying out these activities. Learning is a lot easier when
you can relate words and ideas to concrete experience.

Remember this fact: like the physical world
around us, a computer is what it does and not
necessarily what we say about it. Test your
understanding by experimentation, and be-
lieve what you see.

In order to use Pascal on your Apple computer, you need the following items:
® An Apple Il or Apple Il Plus computer with 48 K bytes of memory.
® A Language System properly installed in your computer.
®m A TV monitor or a TV receiver plus RF modulator, properly installed.

® At least one disk drive. (Two are useful for making disk copies, but you will be
using only one drive while learning Pascal.)

® A pair of game paddles, properly installed in your computer.

10 APPLE PASCAL

8 Apple Pascal Version 1.1 diskettes marked APPLEO: and APPLE3:. (You can also
use Apple Pascal Version 1.0 diskettes, but you will encounter a few differences
that are explained in Appendix H.)

® At least one duplicate copy each of APPLEO: and APPLES..

If you have all seven of these items, then you are ready to go to work on this
session. If you don’t have all of the first six items, then you won’t be able to do
anything further until you have all of them.

If you are a new owner of the Apple Language System, then you probably have all
thg |tems except the last—the duplicates of the APPLEOQ: and APPLE3: diskettes.
This brings up an ugly fact. On the one hand, you are truly asking for trouble if you
go ahead and use your only copy of these precious diskettes, and risk destroying the
information on them. On the other hand, making the two back-up copiesisa 26-step
process on a two-drive system and more than twice that on a single drive. If you are
!ust beginning to learn your way around the Pascal System, that may be a longer
Jjourney than you are ready to take. Here is our advice:

= See _whether the dealer who sold you your Language System will sell you
duplicates of APPLEO: and APPLE3

® Failing that, borrow duplicates from a friend until you get familiar enough with
the Pascal system to make your own copies.

® |fthese strategigs fail, you'll have to go it alone. If you have two disk drives, turn
now to Appendix B for a step-by-step guide through the mysteries of copying.

® Ifyou have asingle disk drive, try to borrow another drive from afriend; then turn
to Appendix B.

]

Failing t.hat, your only recourse is single-drive copying. Turn now to Appendix A
for a guide that leads you step by step through the process.

In no case should you give in to the
temptation to go ahead without back-up
diskettes. ’

After you have obtained your duplicates of APPLEO: and APPLE3:, by whatever
means, go on to the following section.

GETTING STARTED 11

1-1 BOOTING UP PASCAL

Every session of this book begins with what is called the “boot-up” step. One of
the things that you will learn about computers is that by means of programming they
can be made to perform a multitude of distinct tasks. Without a program, they can do
nothing. You will be using your Apple computer to write, edit, and run Pascal
programs. To do that task, your computer has to be taught—that is, programmed—
to understand Pascal. That is what is going on during the Pascal boot up. If you had
wanted to write Basic programs instead, you would use the Basic boot-up
procedure to teach your computer to understand Basic.

The phrase “booting up” comes from the idea of “pulling oneself up by one’s own
bootstraps.” If the computer needs a program to do anything, then you might
wonder how it knows enough even to move a copy of a program from diskette into its
memory. How does it get started? The answer is that it pulls itself up by the
bootstraps. There is a very tiny program permanently stored in one of the integrated
circuits inside your computer, and it goes into effect whenever you turn on the
power switch. All that it does is to turn on the disk drive, read in another short
program from the diskette in the drive, and start that program running. That
program, called the bootstrap loader, has the job of bringing from diskette all the
other programs needed to enable your Apple Il to “speak Pascal”’. The bootstrap
loader program is contained on the APPLES: diskette, while the other programs are
on APPLEQ:.

If this description seems overly technical, don’'t worry. You don’t really need to
know how your computer “learns” Pascal during boot up. Just follow each step
below and the process will happen.

1. Turn on the TV power switch. Turn the volume down. If you have a game
connector, switch it to GAME, TV SCOREBOARD, or the like. Turn the TV
receiver to the proper channel.

2. If the power to your Appleis on, turnit off. The power switch ison the back and is
easily reached by the left hand. When it is off, the POWER light at the lower left
corner of the keyboard is also off.

3. Insertthe APPLES3: diskette into the disk drive. Lift the drive door fully open. Hold
the diskette in your right hand, palm up, with your thumb on the printed label.
Insert the diskette carefully into the drive and lower the door until it snaps shut.

4. Turn on the computer power switch. The POWER light will come on, the red IN
USE light on the disk drive will come on, and you will hear the drive spinning and
clicking. On your TV screen you willimmediately see the phrase “APPLE][".Ina
few seconds the screen lights up with at-signs. A second later, the disk drive
stops whirring, its red light goes out, and the screen clears except for a white
rectangle at the upper left. Immediately after that, the following text appears:

INSERT EOOT DISK WITH SYSTEM.FASCAL
ON 1Ty THEN FRESS RESET

12 APPLE PASCAL

(Note: if no such text appears, it means that i i
\ : , you are using Apple Pascal Version 1.
diskettes. See Appendix H for further information.) l ’

5. Remove the APPLE3: diskette and insert the APPLEQ: diskette into the disk drive.

ggndle the diskettes carefully, palm up with the thumb on the label. Close the
or.

6.Press the keyboard key marked “RESET". If nothin
. g happens, hold the CTRL
key down and press the RESET key. The RESET key is in the upper-right corner
:;CthedAp;?le keyboard; the CTRL key is at the extreme left. After about 15
onds of more red lights, at-signs, and whirring disk sounds, th i
message appears on your TV: ’ » [hedtollowing

WELCOME AFFLEOs TO AFFLE II FASCAL 1.1
BASED ON UCSD FASCAL II.1

CURRENT DATE IS 30-JAN-81

(C) AFFLE COMFUTER INC. 1979y 1980
(C) U.C. REGENTS 1979

About a second later, all activity stops and the following line appears at the very top
of your screen:

COMMAND'? E(DITy R(UNs» FCILEs CC(OMFy LCIN

The appearance of this line tells you that you have successfully booted up Pascal

and that your computer is ready for your comman
Soront) y d. (The current date may be

1-2 THE COMMAND PROMPT LINE

Actually you're looking at only a part of the COMMAND i

tual prompt line. Do the
following: t_lold down the key marked “CTRL” (at the left end of the keyboard) and at
the same time press the A key, near it. (We'll call this process “CTRL-A" in the
future.) Now type CTRL-A again. Do it once more.

GETTING STARTED 13

What you are seeing is the entire COMMAND prompt line, one half at a time.
When you boot up Pascal you see the left half. When you type a CTRL-Ayou see the
right half:

Ky X(ECUTE» A(SSEMs D(ERUG»? [1.11

When you type another CTRL-A, the left half flips back, along with any other
characters that were on the left half of the screen originally.

This behavior is a general property of the Apple Il Language System. The Apple
screen can display lines of text that are only 40 characters long, or less. But the
Pascal system is designed to work correctly with lines that are 80 characters long.
You should think of the Apple screen as giving you a 40-character window for
inspecting the full 80-character Pascal page. When you first boot-up Pascal the
window looks out on the left half of the page. When you type CTRL-A the window
quickly moves over to the right half of the full Pascal page. Another CTRL-A
switches you back.

CTRL-A, therefore, is your window switch, and it is always in effect whenever
you want to check the other half of the Pascal page for information or instructions.
Watch out for the following user trap: by accident you forget to switch back to the
left half, and then you type some command that produces text that appears only on
the left side of the Pascal page. What happens? You don't see it, because your
window is looking at the right half, which may have nothing at all on it. Very
mysterious. When this happens, remember to type CTRL-A and make surethatyou
see the whole Pascal page before looking for more serious problems.

If you are now looking at the right half of the page, use the CTRL-A switch to get
back to the left half, so that you see the beginning of the COMMAND prompt line.

The COMMAND prompt line is the most important “place” in the Pascal system.
You enter the system through the COMMAND line and will often pass through the
COMMAND line on your way between one part of the system and another one, as
you will see in the next section.

1-3 TRAVELING AROUND THE SYSTEM

Notice that one of the “words” in the COMMAND promptlineis “F(ILE”. Type the
F key and see what happens.

The Pascal page goes blank and, after some disk activity, a new prompt line now
appears at the top line. (If by chance APPLEO: is notin your drive now, justputitin. If
you don't, your computer will keep looking for it forever! When the COMMAND
prompt reappears, start over.) Since your window is looking at the left half of the
Pascal page, you see this:

FILER: Gy Sy Ny Ly Ry Cy Ty Dy Qy [1.11

(If, by accident, your window is looking at the right half of the page it will see
nothing. Type CTRL-A to fix it.)

14 APPLE PASCAL

This new prompt line tells you that you have left the “COMMAND level” of the
Pascal system and have “entered the FILER". The FILER prompt line tells you how to
travel to still other places in the system. For example, you can go to the part of the
system that establishes the current date.

Do that now, by typing a D on your keyboard. You should note that the FILER
prompt line goes away and a new message appears. This means that you are no
longer “at the level of the FILER”, but have moved to the level where changing the
date is possible. The new message is

DATE SET? <i1..315—<JAN, DECH~<00,,99>
TODAY IS 31-JAN-81
NEW DATE 7

Notice that at this level there is no prompt line that gives you any cluesasto how
to move to another level in the Pascal system. Instead you are asked to do
something: namely, change the date from 31-JAN-81 (or whatever actual date
appeared on your screen) to today’s correct date.

The top line on your screen tells you the format: a number from 1to 31, a hyphen,
a 3-letter abbreviation for the month, another hyphen, and a 2-digit abbreviation for
the year. Now type today’s date on your keyboard. You're allowed to make
typographical errors, by the way. If you catch them while typing on the line the
errors occur in, you can correct them right away. Just press the left-arrow key (at the
rightend of your keyboard) enough times to move the cursor (the solid rectangle of
light on the screen) to the beginning of the error. Then retype the entire part of the
line you backspaced over. Make a few mistakes right now and fix them by this
method.

When you are satisfied with your answer to the “NEW DATE?” question, enter it
into the computer by pressing the RETURN key, at the right end of your keyboard.

Now, at what level of the system are you? As usual, the top line of the Pascal page
tells you where you are. You have now left the date-changing level and returned to
the FILER.

Let's see whether or notyou succeeded in changing the date. Type D again. Does
the screen text give the correct date? If you made a typing error before and failed to
fix it, now is your chance to change the date again. If the date is okay now, just
answer the question by pressing the RETURN key.

Again you pop back up to the level of the FILER. That is the only placeyou cango
from the date-changing level.

Next, let's explore some other places you can get to from the FILER. Actually
there are more possibilities than are shown on the prompt line. To see the rest, typea
question mark (?) (Hold down one of the two SHIFT keys while typing the key with
the slash (/) and question mark on it.) This new prompt line appears:

FILERS Wy By Ey Ky My Fy Uy Xy Z [1.11

See what happens when you type a V. V stands for “volume” and takes you briefly
toanewlevel. Itislike the D(ATE because you can't go anywhere from it except back

GETTING STARTED 15

up to the FILER, where you came from. But it is different from D, because ltkS:m'?rZ
does its task, without asking any more questions, and t.hen pops)‘/qoubb?r(]: V\?a o
level of the FILER. (How can you tell that you are now in the FILER, by \ eed :/h.e
Notice that the FILER prompt line is the way it used to be before you typ
que?rtwlg?asmkadrg‘ne atthe V level is to display a listof various inputand output dgwces
(“volumes”) connected (“on-line”) to Pascal. “COIT{SOLE:” refers to tt:;a Slstfla?z
screen, “SYSTERM:” to the keyboard, and “APPLEO: ‘t‘o the name of t?ﬁ is deet(:ils
your disk drive, which the Pascal system refers to as VQLUME #4". These
are not important for now, since you are mainly explorlpg the system. cevboard
Now leave the FILER again and go to the L level by typing an L onyourkey ?Tiné
L stands for “list the directory of a diskette”. Once more the FILER promp
disappears and the following question appears:

IR LISTING OF 7

Respond by typing APPLEOQ: (Be sure to use the zero key, not the letter O, and don:
leave out the colon!). Correct any typing errors by using thg left-arrow key an
retyping. Then press RETURN, and watch as the red “IN USE” light on the disk d(|ve
comes on, the drive whirrs, and a table is printed on your T\{ screen. The table lists
the names of all the files saved on your APPLEQ: diskette, their lengths, gnd the dates
they were put on the diskette. The bottom line tells how much space is left on the
diskette. o
As soon as the listing of the diskette directory is finished, the Pascal system pops
i i t line.
back up to the FILER level and displays its prom“p -)
Youphave seen three of the many ways to go “down” from the FILER to g)we‘;
levels’. But how does one climb back up to the COMMAND level? Well, typeaQ an

see.

1-4 MORE THAN MEETS THE EYE

You have already seen that the COMMAND prompt line is too long to fit _ondth:,l
Apple screen. You had to use the CTRL-A toggle switch to move tvhe Apple win t?\e
back and forth from the left half to the right half of the Pasclal pagein prder to serc;ore
whole prompt line. In fact, the COMMAND prompt line con‘(alns even mor
command names than can fit on the Pascal page. Try the following e.xperlm ! At

With the COMMAND prompt at the top of your screen, type a question mark.
this point you should see the transformed prompt line:

COMMAND ¢ U(SER RESTARTs I(NITIALIZEy H(A

Notice that you are still looking at the left half of the Pascal page. It si.mply hzi(s
something different written on it than it did before you typed the question m?rr;
(You saw the same thing happen atthe level of the FILER when you typed a questio

16 APPLE PASCAL

mark there.) Type CTRL-A and check out the ri

okt T ght half of the Pascal page. It should

LTy SC(WAFy M(AKE EXEC

Now type another question mark. As befor
following the word “COMMAND:"
you are still looking at the right

e, the question mark changed the te
bef xt
, but |td/dno{movethe Apple window. That s why
half of the original COMMAND prompt line:

Ky XCECUTE» A(SSEMy D(ERUG,? C1.11

Type CTRL-A to see the left half of the Pascal page.

You should keep clearly in mind the followin

the auostion med g differences between CTRL-A and

1. A question mark is legal only at COMMAND level and FILER level

2. CTRL-A is legal to use in any part of the Pascal system at any time.

3. A question mark causes new text to be written on

but does not move the Apple window. the top line of the Pascal page,

4. CTRL-A causes the A i
! pple window to move from one half
the other, without changing any text on the page. etihe Pascalpage to

SUMMARY

Y
ou have now returned to the top level of the Pascal system, and this is a good

time to stop and summarize j
yourjourney. Table 1.1is asort of ma itori
you have explored and their relationships to one another pofiheterriories

GETTING STARTED 17

Table 1.1 Partial table of the command levels of the Apple Pascal system. Each
indented level is reached from the one above by typing the initial letter of

its name.
Exit to escape
from accidental
entry.
F(iler
Q(uit the filer F
V(olumes on line
L(ist the directory RETURN
D(ate setter RETURN
7 Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half CTRL-A

of Pascal page.

During this introductory session you have found out the following things about
Apple Pascal:

8 You had to use a special boot-up procedure to get Pascal started on your
computer.

® You entered Pascal at the command level, with the COMMAND prompt line at
the top of your TV screen.

® Youtyped a CTRL-A toflip your “window” from the left to the right half of the 80-
character Pascal page and back again.

® You left the COMMAND level and went to lower levels by typing one of the initial
letters listed in the COMMAND prompt line.

= A new prompt line often appeared when you entered a new level. It either gave
you a list of still further places to go, or it asked you what to do at the current
level.

m There was no way to get from a place at one level to another place at the same
level without first going up to a higher level and then coming back down to the

desired place.

18 APPLE PASCAL

® You saw how to change the curr
; i] ent date, to get a list of i
volumes” available to Pascal, and to list the directory of ao d:::e:t':apuvompm

® You quit the FILER level, by typi
B Bilical aystorn Y typingaQ, and returned to the top COMMAND level

QUESTIONS AND PROBLEMS

1. People s i
“tresstru%r::ﬁggleivr:if;: lt:v;:uiesl;\.;:pltthCSD Pascal system of levels as being
stre . Ike the main trunk? i
seen is like a branch? Which levels are like leaves? i e

2. How ma
ny branches (or perhaps leaves) are connected to the main trunk? (Get
f0rget 10 0ok at both haives of e Paseal pages nery 1y neyFrCT2L . Don'
al page! Now type a question mark (?
?)

unt some more. A”Ot'le' g g
a”d CoO queStIOIl “Ialk VV'” et you baCk [O the or Ina

3. What happens when
you type letters notincluded in th
eCO :
example Q, W, and Z. Type one of them. What does your%ggzc?o%rompt. o

4. What diskette needs t i i
. obeinyourdisk drive when i
. . o :
diskette normally remains in the drive when youya:jefltrjztir?g(;:a:c?a‘:l’gscal?What

5. You are now at COMMAN
D level. Youwant t
i : . O see the name of i i
curre ?';t;);;n'_}/our drive. What two letters do youtype? At what I;c;cci’lskette Bl
¢ How do you get back to COMMAND level? eyesendup

6. You have i
rou dat:tjgsutsznt\((a;iddtgceiéj::i-ching|ng level and the computer has asked what
W - quit without changing th i
a listing of the directory of APPLEQ:. What keysgdogyoi C:)arteesznt?) 'gztiz:'d ’t?o o
is”

v ' . .
7 re O V“VIAI\‘D le elar |d by aCCIdellt our “ 'gel appel stohi Y

8. You are
currently at COMMAND level and looking at the right half of the prompt

”“e. YOU type a
n ' . W at y y ou dOtOCOHeCtt e
. . ; dO Ou see .: Vv'l { W'lat SIIOUId y

-

SESSION

TWO

TYPING IN PROGRAMS—THE EDITOR

In Session 1 you learned how to boot up Pascal on your Apple computer and how
to move from the COMMAND level down to the FILER and from there to lower levels.
You also learned how to go back up from level to level. In this session you will
explore a new branch of the “command tree:” the EDITOR. Like the FILER, it is
connected to the main trunk, which isthe COMMAND level. Your purpose, this time,
is a more productive one than before. To write computer programs you need totype
them into the computer, and for that purpose you will need to use the EDITOR

commands.

SESSION GOALS

The primary goal of this session is to teach you how to enter the text of aprogram
(or any other text) into the memory of your computer. In particular, you will enter the
EDIT level of the Pascal system, and from there enter lower levels which will allow
you to type lines of text, make deletions, and make changes. You will leave the EDIT
level, write your text on a diskette, and see how the information is cataloged on the
diskette. You will recover the information on the diskette and move itto the memory

of the computer.

2-1 A WARM-UP EXERCISE

If you are starting this session from a “cold start’—that is, with your computer
turned off, then go to Section 1-1, and read how to boot up Pascal properly.

The COMMAND prompt line should now be visible on the top line of your TV
screen. (If you're trapped in some other part of the Pascal system and cannot seem
to find your way out, just turn off the power and reboot, using the procedure in
Section 1-1.)

Now, leave the COMMAND level and go to the FILER. You do that, you recall, by
typing an F. Next, type a D and check the current date. (This is always good to do
when you first boot up Pascal.) Change the date if necessary, and, in any case, press
the RETURN key. You're now back at the FILER level.

You've done all that before; now for something new. With the FILER prompt line
on the top of your screen, type an N. N stands for “New” and means you are ready to
enter a new program or some other new text into your computer.

19

20 APPLE PASCAL

One of two things will happen as soon as you press the N key. Either you will see

WORKFILE CLEARED

followed immediately by a return back to the level of the FILER, or else you will see

THROW AWAY CURRENT WORKFILE 7

followed by a halt while the computer waits for your reply. If you get the question, it
means that your particular APPLEQ: diskette already has some textonitin the place
where new text will go. This place on the diskette is called the workfile. As a
precaution the computer asks youif youreally want to erase the old text. Theanswer
in the present case is yes, since you are just starting out and you want to enter new
text; so type a Y now.

At this point, no matter which message you got, the computer has carried out
some bookkeeping tasks associated with opening up a clear area in the computer
for you to write new text into. This areain your computer is called your workspace,
and you will be learning more about it during this session.

Your Pascal system is now at the F| LER level. Partly for review, take a look atthe
directory of your APPLEQ: diskette now. You probably remember from Session 1
how to do this: type an L (for “List the directory”) and then answer the question by
typing the name “APPLEO:” and press the RETURN key. (Be careful to use the zero
key, not the letter O, and to include the colon.)

Note on your screen the presence of several file names that begin “SYSTEM.”
followed by other names. Each of these is the name of one file, or collection of
information, that is presently stored on your APPLEQ: diskette. Right now, write
down alist of all these names on a piece of paper. You will be referring to it again in
this session.

As soon as the directory listing is complete, the computer returns to the FILER
level. (How do you know that?) It is now time to go to the EDIT level. The natural
thing to do would be for you to type an E, right? Well, do it and see what happens.

You didn't get to the EDIT level, did you? In fact, when you are in the FILER, the
command E takes you not over to the EDITOR but down a level to the “Extended list
directory” level, which starts off by asking you a question about the diskette. Since

you didn’t mean to enter that level, just press the RETURN key and you will be back
at the FILER.

2-2 ENTERING THE EDITOR

Evidently you can’t go directly from FILER to EDITOR. They are different

branches on the same tree, and you have to go back to the main trunk first. So, quit
the FILER by typing Q.

pro

TYPING IN PROGRAMS — THE EDITOR 21

irst i in the
N ou are back at the COMMAND level, and you see as the first item
w
mopt l?lne the term E(DIT. So, typt:r::tet:el;zyl; R
w prompt line assures you] ced
bell-:vetgz EBIT prompt line you will see the following line:

“inthe EDITOR”. Just

STLE SRET> FO
NO WORKFILE I8 FRESENT. FILE? (<RET> F

Ac I n 1 t I 1 l I .“ T e - you tthe
tua”y yOu are Seei g o ly | e left al of the line. yp a C T RL. Aand ge
’

F ONO FILE <ESC-RET:> TO EXIT)

CTRL-A to get back. . . i fiat
andvyr:e?t?\?so;:?:eme|y mysterious message is trying to tell or ask youi
a

i i u just
i i knew this, of course, since you
i file on your diskette. (Yo'u' . et
Gion lds'tnou\tN)oSztzc;ond thye question “FILE?” isasking you Whethei;yo;r:c::omputer.
clearg ‘ t% rﬁove some other disk file into the workspace area " Zhe Cogtion by
i tIcToen't want to do this now, but if you did, you would atnhsi\: o b ype i
(YO_U the name of the file.) Finally, it tells you wh?t 0'(herh RgETURN oo o
it to the “FILE?” question. <RET> means "press tfihe L o or Koyt
reEsSpgn;ED means, “first press the ESC key (at the leftend o :
X - ’ ““
N key.
d then press the RETUR :
e See wr?at happens when you carry out the ESC
of the system do you go itE%?C
The reason for the - oo
accidentally press the E key when at CRONMMAND level, y]
error by pressing ESC and then RETURN. _ 4 acain deal with the “FILE?
Let's get back to the editor now (by typlng.E) an E%URN e ainas you don'
question?The right answer for you now is the ts)lr?sljeuF:jo s us,e ey R0
ther file into the workspace, bu e
\tlvar;trzgv:/ntz\;(? i?w?c())the workspace. Press the RETURN key and noteanewp P
yp

at the top of your TV screen.

RETURN sequence. What level

i uld be clear to you. |f you
R CAMAND 10 n recover from the

SEDITY ACDJST C(RY DCLETE FCIND I(NSRT J

Use your CTRL-A window switch to see the right half:

T S P
(MF R(FLACE Q(UIT X(CHNG Z(AF L1

22 APPLE PASCAL

2-3 TYPING IN NEW TEXT

Now you are “in the EDITOR”, wi
, R”, with th
screen. (If you're looking at the rig Ciho o
back.) Altogether there are 10 plac
qown and one back up to COMMA
in this session.
To get started, press the | key. | standsfor “Insert”

[OInse tneW textlnto ourwo kSpaCeSta t |g att e
y
II e.

Notice t
hat you are no longer at the EDIT level, since the new prompt line sa
ys

prompt line at the top of yo

ht half of the prompt line, press CTRLp—A tgg:;

r(\elsD);ou can go tq from the EDIT level: nine lower
evel. You will be exploring only two of these

,and meansthatyou are going

. . ' position of the curs i
o or (th
hich right now is at the left end of the first line after thEa p?c?r%l;ﬁ

#INSERTY TEXT L+BS> A CHARy<DEL: A LINE]
and on the right half of the Pascal page
[<ETX: ACCEFTS, <ESC> ESCAFES]

Use th -
Thise ;ZIr?nl;tA”E:yt;ﬂsget baﬁk to the left half of the Pascal page
. . you that you are ;
spe:uoal mfanmg that certain keys r{ave the?eOW # SEAT levsl and tell youtne
r a start, i ic
EDIT e Ykoxc?Jledszlsnegt:]he ESC key. Notice that you just popped back up to th
i7 the EDITOR e et ;Erigllégy'uftby ﬁccidentyou had pressed thelke‘;whilz
i into the INSERT level. il fi
o ey Is very often used elsewhere in the Apple Pa i 1o i thet the
cidental Koy prasans scal system to escape from

Now, press the | ke i
, y again to reenter IN
your keyboard to type the following phras:ERT jevel: Use the alohabetie Kevsen

HOW NOW ELUE COW

Now you will see what the term *
!(ey once and notice that the cu
itrepeatedly untilitis just overt

<BS>"meansin the ine:

om promptline: press the left-a

,:soBr r_wa‘s‘Just backspaced overthe W in “COW" ;::;
eBin“BLUE -Now retype the following from there:

EROWN COW

The left-arrow ke
y allows you to delete one
& .
typed. 5o that you, aa o ou t0 by retypingharacter atatime from what you have

TYPING IN PROGRAMS — THE EDITOR 23

2-4 MOVING INSERTED TEXT INTO THE WORKSPACE

You already know how to leave INSERT level by using the ESC key. Press ithnow
and see what happens. So far, so good; it appears that you have successfully left
INSERT and returned to EDIT. On the other hand, what happened to “HOW NOW
BROWN COW”", which is no longer visible?

Well, perhaps it is still there, but only at INSERT level. To check that idea out,
type | and see what is there.

It looks bad. In fact, the information you typed (“HOW NOW BROWN COW?")
never got moved into your workspace. That is so because you took the escape route
out of INSERT. But there is another way out. Look again at the right half of the

prompt line:

[<ETX> ACCEFTS, <ESC: ESCAFES]

Since ESC throws away what you just typed, it looks as though ETX mightjusthang
on to it. Unfortunately, your computer doesn’t seem to have an ETX key. Actually it
does, and you getitby typinga CTRL-C. Firstuse CTRL-Ato getback to the left half
of the page. Now, while still in INSERT, type once again:

HOW NOW EROWN COW

Now, instead of ESC-ing from INSERT, type a CTRL-C. (Hold the CTRL key
down while typing C.) Note this time that you returned to the EDITOR but that your
text is still on the TV screen. This fact tells you that the text you typed while at
INSERT level has now been moved into your workspace in the memory of the
computer. Whenever you are at the EDIT level your TV screen displays the top 23
lines of whatever is currently located in the workspace area of your computer’s main

memaory.

2-5 THE RESET KEY

There is a prominent key at the upper right corner of your keyboard, labeled
RESET. ltis very close to the RETURN key and so is easy to hitby accident. Now isa
good time to stage such an accident. Press the RESET key. (If nothing happens, try
holding down the CTRL key while pressing RESET.)

At this point you see “APPLE 1[” appear at the top of the screen. After alittle disk
activity the message “NO FILE SYSTEM.APPLE" appears in the middle of the
screen. There is only one way out of the present situation. You must turn off the
power and reboot.

Reboot Pascal using the procedure in Section 1-1. Do you think the information
you typed before pressing RESET is still available? Type E to enter the editor. The
signs &re not good. You are being asked the same FILE? question you were asked
the first time you entered the EDITOR. Press RETURN to continue entering the

EDITOR.

24 APPLE PASCAL

The empty screen below

it the prompt line means an empty workspace. Yourtext is

Beware of the RESET key! We have deliber-
ate.ly led you into this user trap in a situation in
which you had little text to lose. After enterin
300r40lines of new text into your workspace g
Ean be enormously annoying to hit the RESéT

ey while reaching for the RETURN key, and

tlle” I'ave tO WatCll |le|p|eSS|y as yOUI S Ste”'
y

‘ . Now i
brossing AESEE duri thep you will need to hold down the CTRL key while

. . boot-u i i
Finally. 1 you ravo o ot P process. A simple RESET will have no effect.

not to press RESET by accident.

2-6 MOVING THE WORKSPACE TO DISKETTE

At ED
IT level, type I to enter INSERT once more. Then type this senten
ce:

ONE MORE TIME, cOW.

::::els?fm ;NStE?r;l' by means of CTRL-C. You have ent
into ichi isi
Doy eworkspace, which is now visible on
At this point, quit the ED
agtlwty, suggesting perhaps
diskette for safe keeping. On

ered new text and moved it
yourscreen under the EDIT

that the text in your works

ac
the other hand, your TV s pace has now been put on

creen shows the following:

TYPING IN PROGRAMS — THE EDITOR 25

FQUITS
U(FDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UFDATING
R(ETURN TO THE EDITOR WITHOUT UFDAT
W(RITE TO A FILE NAME AND RETURN
S(AVE WITH SAME NAME AND RETURN

When you are in the EDITOR and type a Q, you go to the QUIT level, which allows
you five options. Since the third one is easiest to deal with, type an R now and see
what happens.

Notice that after another bit of disk activity, you're back in the EDITOR, with your
workspace still intact. So the R key is used to correct the easy mistake of
unintentionally hitting the Q key while in the EDITOR. It lets you get back to where
you were without losing anything.

" Next, let's see what happens with the second option. Once again type a Q, to quit
the EDITOR, and then an E, to exit without updating.

The prompt at the top of the screen now is:

FQUITS
THROW AWAY CHANGES SINCE LAST UFDATE?

Let's answer the question with Y (for YES) and see what happens. Typea.

Now you are back at COMMAND level. Okay, go back to EDIT level again by
typing E.

Well, now you know, to your sorrow, what “exit without updating” means. If you
leave EDIT by the Q E Y sequence of key presses, any changes you made to your
workspace are lost. Your change in the present case was the insertion of a new text
into an empty workspace. The text was stored in the computer untilthe Q EY
sequence; after that it was lost. There is no way to recover it.

Now you see that you should have answered N (for NO) to the question thatwas
asked you when you typed Q E.

One more try. Continue entering the EDITOR by answering the “FILE?” question
with a simple RETURN. Now type an |. At the INSERT level, type the following

sentence
THIS IS ITs RROWN COW.

Then leave INSERT by means of a CTRL-C, indicating that you wantwhatyou have
typed to be put into your workspace area. (You can confirm your success, so far, by
noting that you are at EDIT level with your new text still on the screen.)

Now quit the EDITOR by typing Q. This time, use the first QUIT option—
“U(PDATE THE WORKFILE AND LEAVE"—by typing a U.

This time you see the word “WRITING” on the second line of your TV screen. A
second later you hear the disk drive clicking a great deal and see a couple of dots
appear on the screen after the word “WRITING". After that, you see on the next line

26 APPLE PASCAL

the report that “YOUR FILE IS 24 BYTES LONG.”
you typed in extra spaces or a RETURN there ﬁa
An empty workfile contains two bytes Yby the w
_Fmally you see the COMMAND pr,ompt a
yvh;le writing, it is probably because you are :cf
;r’:isse;:i:te.l;/e awrite-protected original. Put in a
' Things definitely look more promisin
directory of your APPLEO: diskette. Fi
the “List directory” level (type an
APPLEO: and pressing RETURN.

Not i
ote that at the bottom of the directory listing on your screen is the entry:

(Each byte holds one character. If
y be more than 24 bytes in the file.
ay.)

ear.l (If you get an error message
t using your copy of APPLEOQ:, but
copy of APPLEQ: and then return to

gthistime. Butasacheck, haveal
' ook atthe
i rst ente'r the FILER (type an F), and then enter
), and finally answer the question by typing

SYSTEM.WRK . TEXT 4 1-FEER-81

(The date will actually be whatever date
ThenL_meer4teI|s youhowman
This directory entry certain

i ygu entered at the beginning of this session.

?/ ' ocks' of;torggespaceareusedon thediskette.)

contain the g r y looks like it might correspond to a disk file that

computer. Woh that \i/;a:nln tlj; workspace area inside the main memory of your
. , a indi '

narer cid test for finding out, and you've probably guessed

Yes, turn off the computer. That will cl
Now boot up Pascal again with APPLES3:
Now, with the COMMAND prom .
EDITQR again, by typing an E.

Thls time you get more disk activit
saying “READING..”
screen:

ear out whatever used to be in its me
mory.

o grjd APPLEQ: as described in Section 1-¥.

pt line visible at the top of your screen, enter the

y than before, you get a new screen message

, and finally you see the following text on an otherwise empty

FEDITS ACDJST C(PY D¢ (I
: : ¥ LETE F(IND SRT
THIS IS IT, RROWN COW., R

This result confirms the f
act that you must
always leave the EDITOR with a Q U sequence
of key presses if you want changes you have
made to the computer’s workspace to be

written out of the compute
aen puter and on to a

TYPING IN PROGRAMS — THE EDITOR 27

The Q E Y sequence leaves the diskette version of the workfile (if any) the way it was
the previous time it was created or updated.

2-7 AN OVERVIEW OF EDITING

For work with all computers, editing means entering text and changingit. In the
Apple UCSD editing system, you must goto the EDIT level and then to INSERT level
in order to be able to type any text into your computer. Each character thatyoutype
goes into a part of the computer's memory that is usually called the insert/delete
buffer, or simply the buffer. (A buffer is just computer jargon for atemporary storage
location in memory.)

All of the text you type in goes into the buffer. When you leave INSERT by
CTRL-C, a copy of the buffer contents moves into the workspace. But when you
leave by the ESC route, no copy goes into the workspace.

Once a copy of the text has been moved into the workspace, you again have
choices about what to do with it. If you leave the editor by the QU route, thenacopy
of the contents of the workspace is written on your APPLEO: diskette and saved
there as a file named SYSTEM.WRK.TEXT, destroying whatever was there before, if
anything. But if you leave by the Q E Y route, then no diskette copy is made and
SYSTEM.WRK.TEXT remains as it was before. (In either case, the workspace copy
of the text is destroyed when you quit the EDITOR and go to the COMMAND level.)

Whenever you go from COMMAND level down to EDIT, a copy of the diskette
workfile (in SYSTEM.WRK.TEXT) goes into the workspace. The original version
remains on the diskette.

It is very helpful in working with data in computers to develop a “mental map”,
telling where the data is, and an understanding of the processes that affect the data
and move it from place to place. Time and attention spent on this task will pay off
handsomely. Figure 2.1 at the end of this sessionisa graphic representation of the
textual data and the editing processes that lie at the heart of what you have been
doing in this session. You should study it closely and see whether your ideas about
how things work coincide with the picture presented there.

There is more to learn about the use of the EDITOR than you have seen here.
Later sessions will add to your present knowledge. But everything that follows will
be based upon the mental picture you are beginning to develop now.

SUMMARY

Figure 2.1 shows how the text that you type into the computer moves from the
keyboard into the buffer, into the workspace, out to the diskette workfile, and back
into the workspace. It also shows how the text in each place can be lost. Note that
text on the diskette is most permanent, and least likely to be erased by accident, and
is in the only form that survives when the computer is turned off.

| 28 APPLE PASCAL
TYPING IN PROGRAMS — THE EDITOR 29

It is a good idea to look over Figure 2.1 carefully as areview of this session. Try to
identify each pathin the diagram with processes that you have carried outduring the
session. You have, in fact, done every process shown in the figure.

Table 2.1 is an extension of the level structure diagram of Table 1.1.Ineach ofthe
sessions, new levels and details will be added. The purpose is to remind you
constantly of the underlying control structure of Apple Pascal.

WORKFILE

(on diskette)

Table 2.1 Amplified table of the command levels of Apple Pascal. Those features

enter E(ditor
studied in this session are shown in bold face type.

Exit to escape
from accidental
entry.

Q(uit EDITOR,
U(pdate)

E(ditor ESC RETURN orQ E

Q(uit editor and R
U(pdate workfile
E(xit with no update
R(eturn to editor Q

Q(uit EDITOR,
E(xit w/o update

WORKSPACE

(in computer)

turn off power Text Changing Commands

I(nsert text ESC
CTRL-C (Normal exit.)

leave I(nsrt

by CTRL-C F(iler
Q(uit the filer F
N(ew workfile RETURN
V(olumes on line
L(ist the directory RETURN
B ESC from I(nsrt, D(ate setter RETURN
UFFER Q(uit EDITOR 2 Show additional commands RETURN
(in computer) .
Commands Available at Any Level
turn off power
CTRL-A Toggle to other half CTRL-A

of Pascal page.
RESET Attempts reboot of Pascal

enter l(nsrt,
type text

During this session you have done and seen the following things.

Figure 2.1 Main flow of t i i
. ext information in th
Rrectangmar i flow of text informaton in gfe:pg'jr;ajcsl system. ® You used the FILER’s N(EW instruction to clear out the workspace in your
go(ztcoe;s?z 1;(());) mt?vmg text from place to place. New text mo?lggsfrf;:: o
» beginning on the keyboard a ing i [i
nd ending in a disk file. ® You found that you couldn’t go directly from the FILER to the EDITOR, but had

Processes that flow to the right destroy information
’ to go up to the COMMAND level first.

30

APPLE PASCAL

You entered the EDITOR and answered the “FILE?” question with a RETURN,
indicating that you intended to type new text into the workspace.

You entered the INSERT level under the EDITOR, typed in a line of text, used the
back-arrow key to modify it, and CTRL-C to move it into your workspace and
return to the EDITOR.

You used the Q U Sequence to quit the EDITOR and to update the diskette copy
of the workfile.

You entered the FILER, listed the directory of APPLEO: and saw there a new file
named “SYSTEM.WRK.TEXT".

You turned off the power to your computer, turned it back on, rebooted Pascal,
entered the EDITOR, and discovered that your workfile had been read back into
the computer workspace from APPLEO:.

You discovered ways to get out of any level that you might have gotten into by
accident.

You experienced the RESET key user trap.

QUESTIONS AND PROBLEMS

1.

List every key-press needed, starting at COMMAND level, to create a disk copy
of a workfile containing only the word PASCAL . (Assume that APPLEOQ: does not
have a SYSTEM.WRK.TEXT file on it atthe start.) Hint: it will take exactly 12key-
presses, counting CTRL-C as one keypress.

- Suppose you start at the FILER level and that APPLEO: contains a SYS-

TEM.WRK.TEXT file. Explain what happens as each of the following keys is
pressed in sequence:

LAPPLEO:RETURNNYLAPPLEO:RETURN

- When you enter the EDITOR from the COMMAND level, under what conditions

do you get the “FILE?” question? When do you not getit? In the latter case what
text do you see on the screen under the EDIT prompt line?

- You are at COMMAND level and want to go to the FILER. By accident you press

the E key. What happens? How do you recover ifyou getthe “FILE?” question? If
you don't?

- You are at EDIT level and accidentally press the | key. Can you recover? If so,

how?

- You are at EDIT level and accidentally press the Q key. Can you recover? I so,

how?

TYPING IN PROGRAMS — THE EDITOR 31

You are at EDIT level and mean to quit and update the di’s,kﬁtte cr?g\yv;)f your
I w?)rkfile area. By accident you type Q E. Can you recover? If so, ?

it without affecting the contents of
t EDIT level and mean to quit wi .
> \S(:)(;Taéill 3VRK.TEXT on APPLEO:. But by accident you type Q U. Can you

recover? If so, how?

SESSION

THREE

WRITING, RUNNING, AND CHANGING PROGRAMS

e

You probably feel a bit misled at this point. We said at the beginning of the last
session that you would learn how to type programs into your computer. In fact, all
you succeeded in doing was entering some text about a certain brown cow! Don't
feel cheated, however; the method you have just learned applies equally well to the
text of a program as itdoes to the text ofaletter to your mother. In fact, whenyou are
in the EDITOR and entering text or changing it, your computer has no way of telling
whether the information you have entered isaprogram or some otherkind of text, or
whether the text makes sense or not. The EDITOR is like a tape recorder; it takes
dictation but it asks no questions about meanings or correctness.

While using the EDITOR in the last session, you found that the textyou typed on
the keyboard existed in the computer system in three distinct locations:

s In the buffer. It goes directly there from the keyboard when you are at INSERT
level within the EDITOR. '

® In the workspace in the computer’s main memory. A copy goes there when you
leave INSERT level by means of a CTRL-C.

® On the APPLEOQ: diskette in the workfile named SYSTEM.WRK.TEXT. It goes
there when you leave the EDITOR by means of the Q U (quit and update) option.

You also saw that if you turned off the electrical power, rebooted Pascal and
entered the EDITOR, then a copy of the contents of SYSTEM.WRK.TEXT was
automatically moved into your workspace, ready for additional editing.

SESSION GOALS ©

In this session you will use what you now know about the EDITOR to enter the
text of a Pascal program into the workspace. After that, you will leave the EDITOR,
run the program, and see what it does. Then you will reenter the EDITOR, make
changes to the program text, leave the EDITOR, and run the changed version. You
will learn how typing errors are reported to you, and how to use INSERT and
DELETE commands in the EDITOR to fix them. You will learn about the WRITE and
WRITELN procedures, about the division of programs into lines of text, and about
other divisions caused by semicolons and words such as BEGIN and END.

33

34 APPLE PASCAL

3-1 CLEARING THE WORKFILE

If the COMMAND inei
prompt line is not visib i
s ible at the top line
ik datz‘:::c: ::d, sreclboot Pascal according to the proce’:!ure i?‘fg':;::: 1sc1reen, oo
iy an:(‘ ¢ taetretv'r:hténever you reboot, using the procedure of S;c;icoh:nge
Soeare o the e e EDITOR. After a little disk activity, the EDIT pro) IT ,
current stots op o you_r screen. What you see under it will depeng o the
Session oo o SYSvTvg’r\;(ﬁle on APPLEQ: . If you did the problems at thupon -
thore 1 v en S -WRK.TEXT will contain the last workfile th 2 wiots
n’t do them, then it will contain the text #tyouwrote

THIS IS IT, BROWN COW.

(If for s .

doesn't ha\?emaev:?)?:zré gﬁt:tatrsestartmg tlhis session with a copy of APPLEO: that
: , then you wi i .
Drowﬁé. If so, just press the RETU)F,!N keyI)see the FILE? question under the EDIT
nyo ,

Since you will be enterie computer's workspace, and is now visible on yo,ur sc con.
out before doing an th.ng a Pascal program into the workfile soon you must clreeq'
the one that you shoyul dlr;glj vzse. There are several ways to do this, bL,:tthe followi?\ari:
free than others, ysremember, since itis usually cleaner and more err?)r-

Leave the EDITOR b

y the Q E i i it wi
con':ents of SYSTEM.WRK TEXT) option. (Quit and exit without changing the
rom COMMAND level, type
! , type F and enter t

empty workfile. The computer responds by asl?ii: 'LER- Then type N, for a new,

THROW AWAY CURRENT WORKFILE 7

Type Y. (This means:
Incidentally. | ans: yes, throw away disk file
asked th y, if your APPLEO: diskette does not contai SYSTEM'WRK'TEXT'
e % above question.) n a workfile, you won't be
pe Q and E. (Quit th ;
enter the EDITOR) e FILER, go momentarily to COMMAND level, and then
With the final ste |
- P you see the EDIT prompt |
screen, telling you that you have returnedpto tr?; ggel{g&:qppear 8t the top of your

WRITING, RUNNING, AND CHANGING PROGRAMS 35

leave the EDITOR

QE
FNY clear the disk workfile
QE go back to the EDITOR
Afteryou have done that sequence of phrases adozen or so times, don’t be surprised
r the entire set of key-presses as a single phrase:

if you start to remembe

leave the EDITOR, clear the :

QEFNYQE
disk workfile and return to the EDITOR.

command system comes naturally from use and

good idea to try to memorize particular key-press

This way of thinking about the
d to remember until

experience. It is probably not a
phrases before you have experience using them. They are har

they take on meaning from repeated use.

3-2 ENTERING PROGRAM TINY

the question it always asks

You are now back in the EDITOR, which isasking you
d SYSTEM.WRK.TEXT on

whenever you first enter it and it fails to find a file name
your diskette. The question just below the EDIT prompt line is

NO WORKFILE IS FRESENT. FILE? < “RET FO

uation on the right half.
that there is no workfile onyour
ter. (You did this several

on the left half of the Pascal page, with the contin
Press the RETURN key, indicating that you know
diskette and that you intend to type one into the compu

times in Session 2, by the way, so it should be familiar.)
To get text into the workspace, you must first enter INSERT level. Do this by

typing |.
With the appearance of the INSERT prompt line at the top of the screen, you are
at last ready to type a Pascal programinto the computer. Use your keyboard to enter

the following four lines of text:

FROGRAM TINYS#

REGIN

WRITELN (“HOW NOW EBROWN COW’)
ENID

36 APPLE PASCAL

Read i
Theret:]eugtrc:)%raarg over carefully, making sure that it is an exact copy of the above
R st pe &t p_acr:]e after PROGRAM, a semicolon after TINY and period afte.
i e o grL%ytsp?éenth?sesl are typed by holding down a SHIFT key whilé
, respectively. Be sure to use sij
S ‘ single quotes (apos
NOW BROWN COW. A single quote is a SHIFT-7. If(yF:Ju tf;zzhae:y)

typing errors, use the left arro
. ’ w key t .
everything from there to the end.y o backspace to the first such error. Then retype

YOU ext Step Isto 'eave 'IJSEI 3 ' sot at the teXt O' ou plOg amis COp|ed ro
t ebu1e 1to t eVVOk e Rec | Il (o] IR . it.

y o} 1yOU see the EDI plO ptll ea pea abovetlle ourl eSO'

Th i
enextstep is to leave EDIT so that the text of your program is moved from the

workspace area of the com ’ i
puter's main memory into the o di i
SYSTEM.WRK.TEXT. Recall that you do that byy typing QPSLsg- ict’ISkette morKtle

3-3 RUNNING PROGRAM TINY

Finally you are at the COM \ ; ; ‘
the screen: MAND level again, with the following information on

COMMAND'? E(DIT» R(UNs F(ILE, CC(OMFy L(IN

At |O |g O“g aSl, You are read to I (0] pl gla LT e n fOl “u" a"d watC'l
DU I g tt e next 14 Seco dS th e OHOVV llg events take p ace

1. The screen clears and the word
COMFILING, .,

appea i i
ppears on the top line. At the same time there is a good deal of disk activity

2.T i i
he following two lines appear near the middle of the screen:

AFFLE FASCAL COMFILER [1,13
£ 0Fa

WRITING. RUNNING, AND CHANGING PROGRAMS 37
3. Quickly after the above, the following four lines are added

TINY [1923 WORDS]

e

3 LINE
GMALLEST AVAILAELE SFACE = 1923 WORDS

ou don’t see the above lines on your screen but instead see the report of an
press the spacebar. This puts you back in the
and startover

Ify
error on the last line, type E, and
EDITOR with your cursor near the error. Thentype QEFNYQE,

at Section 3-2.

4. After a pause of a second or two, the screen clears and the word

RUNNING. o

appears on the line just below the top.

5 Almost immediately after that, the following text appears
HOW NOW BROWN COW

6. Quickly, thereafter the COMMAND prompt line reappears and disk activity
comes to a halt.

You have successfully run your first Pascal program. There were two major
phases to the process: compiling, which was marked by the first three events above,
and running, which included the fourth and fifth events.

You probably noticed the word TINY on the screen during the compiling phase.
That is the name you gave to your programin the first line of its text. The message on
the screen tells you that the computer is now working on your program in a process
called compilation—a translation from the Pascal language into a language more
nearly like the one used by the hardware in your computer.

After compiling TINY the computer begins the second phase, the running of the
compiled program. During this phase you probably recognized the words “HOW
NOW BROWN COW” as being the same as the words between single quotes in the

third line of your program:
WRITELN (‘HOW NOW EROWN COW’)

You have probably guessed that the WRITELN statement, when the program was

run, caused the text between single quotes to be written on your TV screen. In a
moment you will be able to test whether this is true.

38 APPLE PASCAL

But first, see what happens when you run the program again. The COMMAND
prompt is at the top of the screen now. Type R again.

Notice that the process is a lot shorter and simpler this time. It takes only four
seconds from start to finish. There are none of the activities that before were
associated with the appearance of the “COMPILING...” message on the screen.

Type R again. The process is repeated and again takes the same four seconds. It
appears that compilation occurs only once in order to get a program ready to run,
and after that, is not part of the process. Indeed, that is true.

You may be wondering where the compiled version of your program is located.
Enter the FILER, type L (for List directory), and answer the question

DIR LISTING OF %

with APPLEOQ:. (Use the zero key, and don’t forget to include the colon.) Press
RETURN to enter the diskette name.

Notice near the bottom of the directory listing on your screen a new entry with
the name SYSTEM.WRK.CODE. This file was not on your diskette when you

examined it in the last session. The new file was puton your diskette by the Pascal
compiler (itself also a file on APPL

» and seeing what happens
when you run the changed version. Type E to enter the EDITOR.

As usual, the workfile SYSTEM.WRK.TEXT is copie
workspace, which is displayed on your screen beneath the EDIT prompt line. Note
carefully where the cursor (the solid white rectangle) is located now.

Type the right-arrow key a dozen or so times; then try the left-arrow a few times.
Those keys give you character-by-character control of the position of the cursor. If
they were the only ones, it would take a lot of keystrokes to move the cursor through
a long program. See what happens when you type CTRL-L and CTRL-0O several
times. You have line-by-line control as well as character-by-character control.
Experiment also with the spacebar and the RETURN key. Notice in particular how
RETURN differs from CTRL-L. CTRL-O and CTRL-L move the cursor upand down
respectively while the RETURN key moves the cursor to the beginning of the next

line. (You might want to label the O key with an up-arrow and the L key with a down-
arrow.)

cursor anyway.

WRITING. RUNNING, AND CHANGING PROGRAMS 39

Use cu top of the H in HOW in the third
sor control keys to place the cursor on .
line of the I;:)rogram text. Our goal here is to change the words between single quotes
n

" in the WRITELN statement so that we can see what happens when the program is
n

runrfegxatint&pe D. This is a new EDITOR command, and it causes this prompt line to

appear on the left half of the Pascal page:

SDELETE! + » <MOVING COMMANDS: [<ETX: TO

and the rest on the right half
DELETE, <ESCH TO ARORT]

i i is is the basic deletion operation, and you
ss the right-arrow key 17 times. This is e
wiIIPur:e ita gregt deal when making program changes. You have now deleted “HO
N COW”. ' . .
NOVv\\lth?ifo)\//xu delete too many chacters by accident? Allhls not |zs't1.ul::‘isesrt:;e‘|i':1912;
i the left arrow the sam) S.
arrow key a few more times. Now press e etine aystons. jU6t
haracters are remembered by Apple Pascal’s .
c?:slzt;gucneed them again. This is true even when you delete past the end of line. Try
E i hen in DELETE. Try typing
rsor-positioning keys can also be used w "
CTI?IT?I '?:en b:ck up with CTRL-O. Next, try RETURN and follow pdy (:;I';Lve?y
These keys permit rapid deletion of many lines of tgxt, and also provide
from typing errors when you delete more than you intended. iom of typing
Sometimes while editing text it is easiest to recover from asucces: L eng
errors by starting over. You can do that while in DEL.ETE in the sameE\éVéyke r\ilow
did when you wanted to escape from INSERT in Session 2: Press Fheth rs‘(y);' oW
you are exactly where you were when you firstentered DELETE, withthecu
in “HOW". _ o
thel\'l-io:/:;that you know how to delete text, let's get ?Ta'(l:il:_tl\cl) t:uatjobeor:tr?rpylzzlgt_io:gg
" i inthe WR statement.
NOW BROWN COW'" by something glse in the e iha o tond slnals
. Press the right-arrow 17 times until the cursor
2uE<:-t§T'$yper CRTL—C.gCTRL—C means that you really do want the change to happen,
j i t with INSERT. .
justAe:str:}sn‘;g?:t “HOW NOW BROWN COW" has disappeared from yourwo;l:zpat;:v%
you're back at EDIT level, and your cursor is positioned over the second of the
i tes. Now it is time to insert the changg. . o
sm?l‘lspzuloto enter INSERT. Suddenly it looks as if the":lght fr;c:nc;f :?gehltm:r,]d)o% Tﬁ:
i it's j ed over to the extr
disappeared. Actually it's just been mov § e k.
- look. Type CTRL-A agai g
Pascal page. Type CTRL-A and have a b oraiep
i TRL-C. You have, by
in INSERT, type M O O and then C | have t it
delt?tte’ﬁnsert process, replaced “HOW NOW BROWN COW” by “MOQ". The display

on your screen at this moment should look like this:

40 APPLE PASCAL

SEDITS ACDJST CCFY DCLETE FCIND I(NSRT J
FROGRAM TINY;

KEGIN

WRITELN (M007)

END,

(If it doesn’t look like this, use D and/or | to change it until it does look like this.)

The procedure you have used for changing
text has three steps:
1. At EDIT level, move the cursor to the first
character of the text to be changed.
2. Delete it. (D right-arrow(s) CTRL-C)
3. Insert new text. (I text CTRL-C)

You will become very familiar with this process because you will be using this

procedure again and again to correct errors and make other changes in your
programs.

3-5 RUNNING THE CHANGED PROGRAM

To run this changed version of TINY, type Q U R. This phrase means “Quit the
EDITOR, update SYSTEM.WRK.TEXT, and run it.” It is one of those key “phrases”
you will become very familiar with through use.

Notice this time that the computer goes through a longer set of activities,
signaled by the appearance of the COMPILING... line on your screen. After awhile
the word RUNNING... appears across the top of your screen, quickly followed by
MOO. Immediately after that the COMMAND prompt appears.

You have changed your first program and succeeded in running it. The new
version was similar to the old one except thatitcaused MOO instead of HOW NOwW
BROWN COW to appear on the screen when it was run. /t seems reasonably clear
that the effect of WRITELN in Pascal is, at a minimum, to cause the text enclosed in
single quotes to appear on the TV screen when the program is run.

Another observation that you may have made is that whenever you type a new
program or change an old one and then run it, Pascal goes through the compilation
Step before running the program. When there have been no changes, it skips
compilation and starts running immediately.)

WRITING, RUNNING, AND CHANGING PROGRAMS 41

3-6 DEALING WITH TYPING ERRORS

ose,
et you P o4 e, s PR et ns What e
had typed a space, after in)
for example, that you

? Let’s find out. '
haplf):arlidécl)-:MAND level and enter the EDITOR by typing E. Move the cursor over

to the G in PROGRAM. Insert a space before it by the sequence: | spacebar CTRL-C.
o H -
Your screen should now look like this:

ACDJST C(PY DCLETE FOIND I(NSRT J

WRITELN (7MO07)
ENI

hat
Now use the Q U R phrase to run the changed program. Watch careh}:llry1 t;r(:; :llvity
happens and when. Here’s what you should see on the screen whe
comes to a halt.:

COMFILING. ..

FASCAL COMFILER [1.11

AFFLE

. ¢ 0 ‘ V . ,
E?NE 0y ERROR 18¢ <SF>(CONTINUE) ~<..ESC,j~(
On the right half of the Pascal page you will find the rest of the bottom line:

TERMINATE, EC(DIT

j i ram.
This situation is an example of a compile-time error detected in your prog

i inti of

t to the last line on your screen shows you the precise polmt Ir':':z;:txltine

ot ore here the compiler discovered that there wasa prop em. e

o the screen \tNlls ou which text line it occurred in, (line O is the first lme),‘ w Saare
Z?rct)rr](iusj(r:rrw‘ta;:rr1 i: anyd what your options are at this moment. The three option

m <gp>: Press the spacebar to continue trying to compile the program.
.
m <ESC>: Press the ESC key to quit and go back to COMMAND leve

s E(DIT : Type E to go to the EDITOR and fix the error.

WRITING., RUNNING, AND CHANGING PROGRAMS 43
42 APPLE PASCAL

f t itu it
) Elds tlle Co“'p”el t n Ook ex tl ||ke t IS, keep USlng |NSE an

into thinking that there are several others when in fact there may not be. The second doetjgxt try to run this new version by typing Q U R. Now what do you think about the

nes in m T ain.
importance of lines in the text of a Pascal progra ? Enter the EDITOR ag
i , :

t it looks like this:
i i t, let's change the program so tha
1ype E now and notice that, after some disk activity, your workfile is back in the To reinforce this fac

workspace and is visible on the screen. Instead of the EDIT prompt line, the
following error message appears:

ERROR IN DECLARATION FART. TYFE <SP

Sometimes these messages are right to the point and quite helpful. At other t will begin a new
times, they may seem obscure and even misleading. Of one thing you may be To make each change, first move the cursor to the c:: T:g;:: ;hRaETUaN gharacter
certain, however: an error of some kind exists at or before the pointinthe text where line, and then type | RETURN CTRL-C. In thlf way 'y
the cursor now is positioned. Your job is to find it. just before the T in TINY, the B.m. BEGIN, e c.k sure that it looks exactly like the

In the present case, you know what the error is, because you introduced it Check it out when you have finished and'ma (:sion will run.
yourself. Press the spacebar to continue entering the EDITOR. The cursor is] above. Now type Q U R and.see ylhgther this vek 1o the EDITOR: move the cursof
properly located for you to delete the erroneous space. Type D right-arrow CTRL-C. As a final experiment on line divisions, go;r:cthere by means ;f the | RETURN

Check the program to make sure itworks again: type QUR and watch. (If you get - to the G in the first line, and insert a RETU K like this:
additional error messages, go back to the EDITOR, make changes as above so that CTRL-C sequence. The program should look li ’
the program matches exactly the program text at the end of Section 3-4, and run
again.) :

The last page or two of this book contain a list of all Compiler Error Messages.
Later, when you get more experienced, you can use them during the compiling

process to decide whether to continue compiling or to return to the editor. i ;ég;&
WRITELN
(’M007)
3-7 TEXT LINES IN PASCAL PROGRAMS : END.

You have seen two slightly different versions ofa Pascal program. The text of the

program was four lines long. You may have concluded (especially if you know other ' Now type Q U R and see the !'esult. ile-time error. In fact, the error number
Ccomputer languages) that this particular arrangement of text into linesisimportant. Your last experiment ended with a cpmplle-tlme . iﬁto e \;vord PROGRAM .
Let's find out. here is the same one you got when you msertedta ig:cEDITOR.

Enter the EDITOR. Put the cursor just to the right of the last character in the first Type E and then press the SPac‘?ba’ to return oformulate atheory as to whenitis
line. Type the sequence: D right-arrow CTRL-C. You have just succeeded in On the basis of all these experiments, C:In'yc;;]\e text of a Pascal program?
deleting the RETURN character that youtyped when you originally entered that line legal and when it is illegal to use RETURN in

of the program. Now, type this sequence: | space CTRL-C. This sequence has
inserted a blank space between the end of the original first line andthe beginning of
the second line. In effect, you have'substituted a Space character for the RETURN
character.

The program is now only three lines long. Repeat the above process, moving the
cursor just beyond the new end of the firstline, deleting the RETURN andinserting a 3-8 WRITE AND WRITELN
space. Do it a third time. At this pointyour program is one line long. Itlooks like this:

i DIT
For the following experiments you will need“a‘ cIezruv:z::ﬁge.EMFa’I:eYsgreEtr;zﬁ "
i . type the se -Yo
at the top of your screen. Then : on e
fr:i?;f:riz start of tF:mis session for the same purpose. Think through the me g

each command in this seven-letter sequence.

44 APPLE PASCAL

Continue entering the EDITOR now by answering the “FILE?” question with a
RETURN, indicating that you will type in the workfile. At this point you are in the
EDITOR with an empty workfile, ready to enter new text. Study the following
program:

As you type it into the computer’s buffer, make certain of the following points:
1. The program name, WRITEIT, contains no spaces.
2. There is a semicolon after the program name.

3. The third line is indented two spaces. You use the spacebar to create the
indentation. After that, the next three lines automatically start at the same
indentation.

4. Three semicolons separate the four program statements between the words
BEGIN and END.

5. The seventh line is “undented” two spaces, back to the left margin. You do this
by typing the left-arrow key two timeés before typing END.

6. The program ends with a period.

Type |, and then enter the program above. Move the text into your workspace by
typing CTRL-C. (If you discover an error in the text at this point, move the cursorto
the error and fix it with INSERT and/or DELETE operations, just as before.)

Type Q U R to run WRITEIT. As usual with new or changed programs, the
process starts with the “COMPILING...” message. If you typed the program
correctly there are no compile-time error mesages. (If you do getanerror message,
then type E followed by spacebar to get back to the EDITOR and fix the error.) After
the run is complete, your screen should look like this;

COMMAND'? E(DITy R(UNy FCILE, C(OMF, L(IN
RUNNING. ..
HOW NOW EROWN COW

WRITING, RUNNING, AND CHANGING PROGRAMS 45

imi i i I
It looks as though WRITE and WRITELN have very sm;na.r meahnz;{\gasulge:a};:e
onderingw
display text onthe screen. Perhaps youarew ' ®
;rohueryv:);?s to pryear, strung together onasingle line on your screen. Two ideas may

have crossed your mind:

Stalt a new Ii“e after wr it ||g |tS leXl or the screen, but W““ l E |||ay not

w line
2. Another possibility is that the semicolon after WRITE may pre\:gnn; '?onbeegin.
. from being started. Absence of a semicolon may cause a new li

i in the

The first idea can be tested easily by changing WRITE t(i '\(NRsthiLr\lla‘l:r; e

ram. Type E to enter the EDITOR. Use the cursor contro eyt : .
2:1?'301' irﬁmediate|y after the Ein “WRITE (NOW’);”. Enter INSERT by typing .

TRL-C. . -
: NT?Ir;drgsult should be that you have changed WRITE to WRITELN in that line

ike this:
your program text and are back in the EDITOR. The screen now looks like

SEDITS ACDJST C(FY DC(LETE FCIND I(NSRT J

FROGRAM WRITEITS

REGIN .
WRITE (’HOUN’)r

WRITE (‘BROWN
WRITELN (/COW’)

ENI,

f
Run the program by typing Q U R. As before, you see on the scresn a rsi;:i%rr': ?o
progress during the compiling phase and, if there are no e.rr.ors aquick tran
the running phase. At the end, your screen looks like this:

COMMAND? E(DITy R(UNy FC(ILE, C(OMF» LCIN

RUNNING «
HOW NOW
EROWN COW

As you now can see, the first explanation i§ corrc_egt. The b:g d:ffe;re:g:es g;a;;'ezr;
WRITE and WRITELN is that WRITELN ends its writing act:v:t/eswzllstart o
issuing a RETURN, so that the next chara_cters sent to the screen
line at the left margin. WRITE does not issue a RETURN.

3-9 ABOUT THOSE SEMICOLONS

’ i that the

Just because the first explanation is correct doesn'’t neces§arll>; 21::{(; t;so e

second is totally wrong. Even if WRITELN does start a new llpe, lhe e
necessary to use a semicolon after WRITE to keep it from doing

46 APPLE PASCAL

More investigation is in order, and the obvious ex

wheEn tyou delete a semicolon after WRITE befiment s to see what nappens
! .
er the EDITOR. Move the cursor to the semicolon after the first WRITE in the

E by CTRL-C, so as to
o oy mae lito pace whenyou returnto the EDITOR. The program

BEGIN/END block. Delete it. B
: - Be sure to exi
move the change into your works exit from DELET

FROGRAM WRITEITS
EBEGIN

,,)
WRITE (/BROWN /)
WRITELN ¢’COW’)

ENIi,

a
’
a
’

F
rom the EDITOR, type Q U R to run the program. What happened? What is

ERROR 67? Type E to return to i
the EDITOR
top of your screen. It says i thetextor

TLLEGAL SYMEOL (FOSSIELY MISSING ‘5’ ON

on the left half of the Pascal page, and

LINE AROVE) . TYFE «SF:

on the right.

The hint i i i
int in this case is correct. The semicolon you deleted is the missing

semicolon referred to in the
error message. Evi ion i
wrong. In fact, the semicolon is required.g eidently the sacond explanation l

In Pascal, semicolons are requi

, equired between
any two statements. They signify the end of one
statement and the beginning of another.

Semicolons have no effect
on th
and WRITELN work. ey WRITE

The

. c;)c)rggf:;bgtween the role of the semicolon and the RETURN in the text of

o rules'? very sharp. Yog may, without breaking any of Pascal’z1
» type a RETURN quite literally anywhere you would have typed a

the error message at the

WRITING. RUNNING, AND CHANGING PROGRAMS 47

space. But you have little freedom regarding semicolons. Whenever two consecu-
tive statements occur, a semicolon must occur after the first statement and before
the second. (The semicolon itself may be preceeded or followed by spaces, or for
that matter, RETURNS.

If you have read the last paragraphs very carefully, then you are probably
thinking that we must be mistaken. The original version of WRITEIT worked fine
even though it seemed to be lacking a couple of semicolons. There was no
semicolon between BEGIN and the first WRITE, and there was none between the
WRITELN and END. The rule about always needing semicolons between statements
must be wrong, you might think.

We agree that a semicolon is not needed after BEGIN nor before END. We insist,
however, that a semicolon must separate consecutive statements. You've probably
already guessed the way out of this apparent contradiction: BEGIN is not a
ustatement” in Pascal, nor is END. In fact, you should think of BEGIN and END as
nothing more nor less than punctuation marks. BEGIN is like an opening bracket
and END is like a closing bracket. Statements within brackets need to be separated
by semicolons, but no semicolons are needed to separate the statements from the
brackets themselves.

The above paragraph is so important that you probably should reread it now and
make certain that you understand it. You will see many BEGINs and ENDs in this
book and it is essential that you stop thinking of them as a kind of statement. It is
natural to think of them as statements if you are familiar with other languages, since
programmers almost always put BEGIN or ENDon a line by itself. Recall, however,
the other main fact about the text of a Pascal program: arrangement into separate
lines is left up to the author. BEGIN and END, therefore, really aren't either lines or
statements. They are only words that stand as major punctuation marks of the
language.

If this concept seems strange to you, keep
reminding yourself that a RETURN in the text
of a program has exactly the same
significance—no more and no less—that a
space character has. Either one may be used
whenever it is necessary to separate the words
of the language from one another.

As you have already seen, the same program can be typed as one long line, with
no RETURNS, or as a vertical column of single words and symbols, with no spaces.
Since the structure of the program is not based on text lines, Pascal has to have
other means of grouping and separating statements: hence BEGIN, END,
semicolons and other formatting devices that you will learn later.

48 APPLE PASCAL

The structure of P

ascal programs is not
based on text lines.

programming languages offer.

We have used that stylistic freedom here to adopt an indentation scheme in
four stgtements between BEGIN and END were each

(and others) have written.

By way of example, and to conclude thi
this book and remind yourself of the
indented form. Well, folks, here is an
grammatically

S session, turn now to the Introduction of
way program DICEGAME looked in its neatly

other version of the same program, and it is ag
correct as the one in the Introduction. Let's hear it for style!

FROGRAM DICEGAME ; USES AFFLESTUFF; CONST
HELLFREEZESOUER=FALSEiUAR DICEyFOINT:
INTEGER } FROCEDURE ROLLEM(VAR TOSS:
INTEGER) s REGIN TOSS!=RANDOM MOD 6413
TOSS!=TOSS+RANDIOM MOD 6+13WRITELN(

‘YOU ROLLED @ "+ TOSS)END; REGIN REFEAT
ROLLEM(DICE) ; CASE DICE oF 7711 WRITELN
C’You UIN’);Q;S;lQ:URITELN(’YOU LOSE");
4r5r698,95103REGIN POINT2=DICE5REPEAT
HDLLEH(DICE)UNTIt(DICE=POINT)OR(DICE=7)3
IF DICE=FOINT THEN WRITELNC’YOU WIN)
ELSE WRITELNC’YOU LOSE’)YEND END UNTIL
HELLFREEZESOVER END,

WRITING, RUNNING, AND CHANGING PROGRAMS 49

th ')lese“ttl“ I n ..|| f dtOt e
A i i lted waiti g or yOu to atten h
t e i e your co putel 1S Stl“ ha ’ i

|||ic0|onl er g’l lt |OUI ld |n yOUI ploglalll. P'ess the spacebal to get 'u y
se

- OR. Then quit the EDITOR and return to the COMMAND level.

into the EDIT

SUMMARY

During this session you have done and seen the following things:
m.
You used EDIT/INSERT to enter the text of a short Pascal progra

s You used the Q U R sequence to run the program.

unnin was a two-phase plocess. COIle“lIIg or tla"slat“l Fasca' into a
R 9 ’ 9

i slated
. age closer to the one used by the hardware, and running the tran
langu
program. .
. . m
You found that the compiler translates the diskette text file of the progra
.

code file on the same diskette.

in the
® You used EDIT/DELETE followed by EDIT/INSERT to make changes i
program.

ition the
You used the arrow keys, CTRL-L, CTRL-O, spaf:e and RETURN to positi
; c:rsor in the workfile prior to insertion or deletion.

i compile-time
B You introduced typographic errors into a program and saw how p

errors are reported and repaired.

i i f the word
B You discovered that it is illegal to put a space in the middle o
PROGRAM.

i i is permitted
® You discovered that division of Pascal program text into lines is p
anywhere a space is allowed.

i | S, a“d “.at tl'e WOIds BEGIN a"d END serve tO blacket Statelllellts
semicoion

into functional blocks.

ton your
B You used WRITE and WRITELN in programs to generate textual outpu y
screen.

I. Those
i d levels of Apple Pascal.

lified table of other comman . .

i Ifi‘e?t%:es studied in this session are shown in bold face type

51
ND CHANGING PROGRAMS
S WRITING, RUNNING, A

Now let’s also update the tables that i
of the Appre o0 U e mark your progress into the leve| structure Tabl

Exit to escape
from accidental

entry.
Table 3.1A Amp'llfle.d table of the EDITOR levels of Apple Pascal. Those features
studied in this Session are shown in bold face type Fliler
Q(uit the filer ;ETURN
Exit to escape N(ew workfile
from accidental V(olumes on line AN
entry. L (ist the directory SE?LJJRN
E(ditor D(ate setter RETURN
; al commands
Q(uit editor angd SSC RETURN orQ E ? Show addition
U(pdate workfile i kfil
Lo ram in workfile
il E(xit with no update R(un the prog
‘ } R(eturn to editor Q Commands Available at Any Level

Cursor Moving Commands CTRL-A Toggle to other half of CTRL-A
| Pascal page.

Right-arrow (Move cursor ri ht enoator e

Left-arrow (Move cursor Ieﬂ?) e

CTRL-L (Move cursor down

CTRL-O (Move cursor up)

RETURN (Move cursor to
of next line)

Spacebar (Move cursor to next
character)

beginning

i ion 3. A similar
Table 3.2 These are the five Pascal words that you used in Session

table will appear at the end of all future sessions.
Text Changing Commands

GRAM
BEGIN END PRO
I(nsert text ESC WRITE WRITELN
5 CTRL-C (Normal exit)

(elete text

CTRL-C (Normal exit.) Esc

QUESTIONS AND PROBLEMS

1. If you are at the COMMAND level, what keystrokes are necessary to clear out the
workfile?

2. You have just finished entering a Pascal program, have pressed CTRL-C to
move the program from the input buffer to the workspace in Apple’s memory.
What key presses are required to run the program?

3. Ifyou are at the EDIT level, give the keypresses necessary to display a list of the
files on APPLEOQ: jf you don’t wish to update the workfile.

4. As far as Pascal is concerned, how are spaces and RETURNs treated?

5. If you are in the EDIT/INSERT mode and press the ESC key, what will happen?

6. A program line reads
WRITELN (‘FAT CAT’)

If you have just entered EDIT level, explain how you would change the line to
read

WRITELN (“BAD CAT)
7. Suppose your workspace contains the lines

HI DIDDLE DIpoLg,

THE CAT AND THE FIDDLE,
THE COW JUMFED OVER THE
MOON,

Explain how you would delete the lines

THE CAT AND THE FIDDLE
THE COW JUMFED OVER THE

from the workspace.

WRITING, RUNNING, AND CHANGING PROGRAMS 53
i ?
8. What is wrong with the following program?

FROGRAM ZIFj

1E N ’

BhSrIuTELN C/ZIFFITY?)
WRITELN (/DO0’)
WRITELN (/DAH")

END

.) 5
9. What will happen if the following program is run?

FROGRAM QUOTES$

GIN Sy
FEORITE (/IT UAS THE)

WRITELN (/BEST OF T{M?Sv’)i
WRITE (“IT WAS THE)gES .
WRITELN (‘WORST OF TI .

END.

.
W t plOglalII to p| i“t Out t“e IO“OVV"lg Iettel pattelIIS on tlle screen O yOUI
IO rite a

computer.

AB
ARC
ARCD
ARCIE

R

SESSION

FOUR

GENERATING SOUND

You have now reached an important plateau in your understanding of Apple
Pascal. The dozen or so single-letter system commands that you have learned are
the ones that you will use 90% of the time in the future. You used themin the previous
session to write, compile, run, change, recompile, and rerun your first Pascal
program. You will be doing this sequence of activities again and again throughout
the rest of this book. Your programs will get longer. They will contain new types of
statements. They will exercise new features of the language and the computer. But
the sequence, write — compile — run — change — recompile — rerun, will be with
you forever.

One of the problems you have probably already encountered is that the screen is
often filled with information that comes from different sources. Did a particular line
of text show up there because you typed it in? Or, perhaps the Pascal operating
system generated the line: or perhaps the line came from the compiler or from the
program when it was run. Perhaps lines from all these sources are on the screen at
the same time. Not to worry, however, since after a few hours of practice at your
computer you will automatically sort out where information on the screeniscoming
from.

The reason for bringing this issue up is that it gets in the way of learning about
Pascal. Itis enough for you to concentrate on the details of Pascal without having to
worry about what process generated a display on the screen. Consequently, we will
avoid the problem as much as possible in this session by using the sound and game
paddle features of the Apple. The main advantage of this strategy is thatit will always
be perfectly clear where information is coming from.

Be certain that the two game paddles are properly installed in your Apple
computer before starting this session.

SESSION GOALS

You will mainly review the elements of Pascal programs learned in Session3and
extend this knowledge to programs that use loops. The and sound paddle controls
will be used to demonstrate output, input, and the loop process. As part of an on-
going process you will review the manner in which Pascal programs are entered,
modified, and run.

55

56 APPLE PASCAL

4-1 A SHORT REVIEW

let's see what's the
re before destroying it i ¢
always a good practice.) ynattiner

om COMMAND leve enter . p
' I I, type E to t
".e ED' T 0“ AS ou |Obab eca' one
(o) tVVO th lgS a Ways appells Wllel you dO ”“S ” tt ereis y'o SYS I EIV yW/RK EXI
.

file on the diskette i
: ,» You will see the *
But if SYSTEM.WRK.TEXT does exies et LE bt e

of your computer and di

displays the t
the same APPLEO: diskette that y
sutua’mon will occur, and you will se
won'’t be using it any more, you m

. message.
ot;; tzhse?e;r:elaisystem copiesitinto the workspagce
nes on your screen. If yo i
Ou were using in Session 3 hen the semons
, then the
e the last program that Pl
' : you wrote. Because
ay get rid of it as shown below. (If, on the ot);:e)el:

S r\'JE y Quit the EDITOR
From FILER get new i
' , workfil
QE Quit FILER, enter EDITOR -

Whichever state ‘
your APPLEQ: di
SYSTEM.WRK.TEXT, and the “FILEl’?s:‘kene

for a reply from you. Press RETURN

ques\?/_as in originally, itis now cleared of file
Ion is now on your screen and waiting

4-2 GENERATING SOUND

gram press | to switch into the insert mode. You

should
see the INSERT prompt line at the top of the screen

program a
type in thi

A 2B

GENERATING SOUND 57

Examine the short program below. Note the vertical spacing between parts of the
rogram and how the indentation emphasizes the structure of the program. As you
s program, check each line carefully before going on. If mistakes are
ember that you can use the left-arrow at the right side of the keyboard to
move the cursor back to the location of the error. Then just retype the remainder of

the line correctly. Okay, now type in the program.

You should see the program on the screen exactly as shown above. The INSERT
prompt line should still be at the top of the screen. Press CTRL-C to move the
program into the workspace of the computer memory. After this is done, you should
see the EDIT prompt line at the top of the screen.

The program isn’t much more complicated than the ones you worked with in
Session 3, and seems reasonably transparent. The program name is SOUND which
reflects the purpose of the program. This is the first program you have seen which
has the “USES block”. APPLESTUFF is a collection of special procedures. It is
stored in in APPLE0O:SYSTEM.LIBRARY. The APPLESTUFF procedure used in this
program is named NOTE. When the program is compiled, the computer brings
APPLESTUFF into the program. If a program does not use any of the special
procedures, there is no need for the APPLESTUFF declaration.

Now you can try out the program. Remember that at the EDIT level, Q causes the
computer to leave the EDITOR and prompt you about the workfile. U causes the
workfile to be updated on the diskette APPLEO:. Finally R starts the compilation and
execution (“running”) process. You can type the three letters all together and the
computer will pick them up as needed. Press the keys Q U R.

After a few seconds of disk whirring and various messages flashing on the screen
during compilation, the program will run. If there were no errors inthe program, you
should have heard a single tone (approximately middle C) that lasted a little more
than a second. Really not too exciting, right? Have patience: more impressive results
are close by.

(If you didn’t get the results described above but instead got an error message
during the compilation process then there must be a typing error in the program. If
so, press E to call the EDITOR and then press the spacebar. Find the error and
correct it with the delete and insert operations you learned about in Session 3.)

It should be clear to you that the source of the tone was the command NOTE
inside the program. No action on your part was required after you signaled the
computer to run the program. Type R and listen again. There were no compiler
messages this time, since you had made no changes between runs. Now rapidly type

58 APPLE PASCAL

threg Rs in a row. Notice that the com
carries them out in sequence.

Now let's see what ha
NOTE and then rerun. T

{1 i e E t
20", Chango t teom yp o enter the EDITOR. Move the cursor to the “2”

At thi i
Retu:\ ptzlntth);méts’:l.'?uld be back at EDIT level. Type Q U R, and list
paragrephs, ehacgt “%R” anc!‘ repeat the editing steps in ’the prevei:.
oot vt aang ?h' 0” to “200”. Run (Q U R) the new version. Wh " e
you think the two numbers in the NOTE statement éont atl';s e
rol?

4-3 ANOTHER WAY TO MAKE THE SAME SOUND

FROGRAM SOUND;

USES
AFPFLESTUFF ;

BEGIN

END,

Perhaps the easiest wa

‘ toi i i
following aromserSie Y toinsert the two lines that begin with VAR is to use the

1. Place j i
the cursor just to the right of the semicolon after APPLESTUFF
2. Type | to enter INSERT mode.' |

3. Press RETURN once to start a new line.
4. Press RETURN again to enter a blank line.

S. Press the left arrow twice to adjust the indentation

6. Type VAR and press RETURN.

puter shores up the extra commands and

Ppens when you change the numbers in parentheses after

b .
R Yy the usual delete/insert sequence: D right-arrow CTRL-C I"3l

[
t
!

GENERATING SOUND 59

7. Press the spacebar twice (not the right arrow) for indentation.

8. Type

and do not press RETURN.
9. Type CTRL-C to exit INSERT mode.

Notice that in this method, you start out on the line above the place you want to
insert one or more new lines. The first thing you insertisa RETURN. Thenyou enter
the new line or lines but do not put a RETURN at the end of the last line.

You can use the same strategy to insert the two new lines after BEGIN, starting
with the cursor just to the right of BEGIN. (Only asingle RETURN is needed at the
start this time, since you are not inserting any blank lines here.) Finally, you canuse
delete/insert to change the numbers “30, 200” into “PITCH, DURATION".

Type Q U R to run the new version. (If there is acompile-timeerror, type E, press
the spacebar, and make the necessary changes.) What do you hear? Type R and
listen again.

If all went well, then you heard exactly the same sound in the new version that
you did with the immediately previous one. This may not seem like progress toyou,
since we made the program larger and didn’t get anything new out of it. Yet it is
progress, for we have separated the program into two distinct phases. The first
phase assigns numerical values to the words PITCH and DURATION. The second
phase uses these values, whatever they are, to make a sound. In just a few minutes
you will see how to make use of this separation to produce many differentsounds by
changing the values of PITCH and DURATION.

In Pascal, PITCH and DURATION are called variables. The first thing you
probably noticed about them is that each variable name occurs in two different
sections in the program: in the text line after the word VAR, and again in the
BEGIN/END block.

Let's see what happens if you delete DURATION from the line after VAR. Return
to the EDITOR, move the cursor to the comma before the “D” in DURATION, and
delete “, DURATION”. Leave DELETE mode (CTRL-C)andrun(QUR)the changed
program. What happened?

Toward the middle of your screen you should see the compile-time message
“LINE 20, ERROR 104”. Type E to return to the EDITOR. The error message at the
top of the screen says

UNDECLARED TDENTIFIER. TYFE w G

The cursor is just to the right of the word DURATION inthe BEGIN/END block of the
program. Note that the compiler did not make a similar complaint about the word
PITCH.

60 APPLE PASCAL

GENERATING SOUND 61

ives
Appendix C has a complete list of Apple Pa.scball relsf;;ids:;:)trssﬁ:tn2§23With
. es.
You h iust di d a basi morepdetailed rules governing legal names fg:nviat‘trilr?g spaces and punctuation marks,
I ofuP oo :us ISC;Ofvere f . aSI%gralmm:r letters and follow with letters and numbers, ou accidentally pick a name that is the
‘r(us ; tgsf: ' z’a:xc;ezl oc: ; ﬁ: o s: re;aty you'll be okay, except for a rare time when'y
nown € Pascal compiler, you have to

| “ | i the res Ved (o] dS, e W|“ adOp p
y ln Oldel to Ca” y0U| atter tion to ll I e WOTr " rn

||Ve““0“ | a“ uture plOgla ns shown in “' S bOOk “le conver tion is t a
co

Words such as BEGIN, END, WRITELN, and NOTE are known to the compiler.
But variable names, such as PITCH and DURATION, are not. Pascal requires that
you declare them in the VAR section of your program. (VAR is an abbreviation for
VARIABLE.) If you forget to do so, the compiler reminds you of any undeclared
identifiers. “Identifier” is just a fancy word for “name”, by the way.

Fix the error as follows. Press the spacebar. Use CTRL-O and arrow keys to move
the cursor just after PITCH in the VAR section. Reinsert “, DURATION”. Exit with
CTRL-C.Make certain that your program is now exactly the same as it was at the
beginning of this section. (If you're in doubt, run it. Then return to the EDITOR.)

Although your freedom here is great, it isn't total. Try the following experiment.
With the cursor to the right of DURATION, type I and insert “, BEGIN”. Leave the
INSERT mode via CTRL-C. The VAR block now looks like this

VAR

RUN (Q U R) the program. Again you get a compile-time message that says
“LINE 16, ERROR 2", Type E and read the error message on your screen. Notice that

the cursor is located just after BEGIN in the VAR block. The slightly obscure
message

IDENTIFIER EXFECTED

means that the compiler did not want you to use BEGIN as a variable name. Why

not? Because BEGIN is a word that has a special meaning in Pascal. We say that it is
a reserved word. ’

Altogether, Apple Pascal has 41 reserved
words, and you may not use any of them as a
variable name. If you do, then you will get the
“IDENTIFIER EXPECTED” message in the
VAR block where you first try to define it.

res !
you will be reminded

still looking at the error message,

the VAR block. Now o) "
aEliolt':l fr::::es in the BEGIN/END block. When finished, the progra
i

like this

i see them again and again,
i rinted in bold face type. As you
e i betg stay away from them as variable names.

i blems. If you are
i sometimes can lead to pro
L e B e et o words;:‘:sts the spacebar. From the EDIT level, delete

TELN in the VAR block and
change PITCH to WRI A block ant

PROGRAM SOUND#

USES
AFFLESTUFF$§

VAR
WRITE

BEGIN o
WRITEL 5305
RATION $= 2008
NOTE (WRITELN, DURATION
END.

i in this context.
i fore, but certainly notint .
WRITELN several times be 2, ' conext
YOELhr\?\?:' :Spergcedure normally used to send qurmatlon to thetts\(;r:STTOR Jhe
comp ter accept WRITELN as avariable? Well, let's find 3ut. Leave
run the i the results?
surprised at the) the
run(;te pr:g\:'va:r;-h\l/:l: r&‘:z EDIF;'OR and insert the shaded line below so that
ay,

BEGIN/END block looks like this

BEGIN
WRITELN

DURATION = 2
NOTE (WRITELNy DURATION)

END.

change, the program ran and the computer

iable name. Will the computer
TELN as a variab b (10 aond

Well, you saw that before thi? \I/s;tl
idn’ lain about the use o . iab o
g;dra]glgﬁmmr?oa that WRITELN is being used both in its usual

i ame?
information to the screen) and also as a variable n

62 APPLE PASCAL

Leave the EDITOR and run the program. This time things didn’t work outaswell,
right? ERROR 59 means error in variable. The problem arose because you
declared WRITELN as a variable and then attempted to use WRITELN as a
procedure to send information to the screen.

In addition to the reserved words in Pascal (which you cannot use as variable
names) there is another class of words which may be used for variable names under
some circumstances. This new class is called built-in words, and WRITELN isinthis
class.

The computer understands these built-in words so they do not have to be
declared in a VAR block. You may declare and use a built-in word for another
purpose provided you don't subsequently try to use the word in its usual meaning in
the same program. WRITELN is acceptable as a variable name provided you don’t
then try to use it to send information to the screen in the same program.

We will not print the built-in words in Pascal programs in bold face type as we will
for reserved words. Instead, beginning with this session, a listing of the built-in
words encountered to date (as well as the reserved words) will be given in each
session summary.

As already pointed out, you do have great freedom in the choice of variable
names, but you do not have license. Even though it is possible to use built-in words
for variable names, the prudent programmer will not do so.

Press E and the spacebar to get to the EDITOR. At the EDIT level, use the

insert/delete modes to put the program back in it's original form. When finished,
your program should once more look like this

PROGRAM SOUNII;

USES
AFFLESTUFF

vaR

BEGIN

DURAT] 003
END.

4-4 THE THREE PROPERTIES OF VARIABLES

Let's see what this program has told us so far about variables. First, they have

unique names, such as PITCH and DURATION. Second, they can be given values by
statements such as these:

FITCH = 303
DURATION = 200

GENERATING SOUND 63

ed assignment statements because tr::y ats:tigrr:‘ ;ra‘[(t;?:
)
ike 30 or 200) to variables (like PITCHor DURATION). ¢rt:::t :-\at::)l “?=" A
e rams are assignment statements, by the way. m)é O the squal
mo?;r?r:?gnt operator. You may not put a spacfet :e';w;z;nnment S atar. Tho only
o ither side of the ' .
i ut spaces on eithe o e single
i lt)rlxj;t);/%uu Tn?; Fr))ut oﬁ the left side of the “:=" isthe name of avariable
o tion to this rule is discussed in Session 6. rotlowing experimentwillshow
exc\?:riables have a third and final property, and the following
o i i twill show
Yo iebles i inal erty, and the following experimen
i third and final property, b
Varr:z?liﬁsb:veetl?m to the EDITOR if you're not already there. Change th
you w :

assigment line to read

Statements like these are call

then run the program. o
andThis tiny change resulted in compile-time erro

the error message. It says

r number 129. Type E and check

TYFE CONFLICT OF OFERANDS. TYFE <SF>

i ssignment
Th rsor is at the right side of the semicolon after the PITCH assig
e cu .
i i mething
Sty have discovered by this experimept is that van;alg)lfisshaanv:;gr. S
e nd furthermore, that in most situations type con cljc oared your PITOM
- typﬁ\i'?EGER in your VAR block. It means that you hav.e : est e ber,
LZZV\l/DoLrJdRATION variables to be of type integetr..(Atxg ltr;ut:géeéglll:lj/END e e
-8723.) But once you ge into Lo o
SUChr:rsn 5)'/023?%@: assignZnent statement tries to.glve.a PITCH a valuet
ipr:t?a%er b'ut is a decimal fraction. A dgcnmal fraczlonel?o asca o e
real. So you are trying to assign a thing of one typ

Pascal calls this a type conflict.

Pascal is said to be of type
f another, and

The important things to remernber a?ou;
variables are their three propertlest. r;zla\:vn:),lsyge
value. Name and type mus . .
Zgglared in a VAR block, and value is assigned

somewhere in the BEGIN/END block.

64 APPLE PASCAL

4-5 INPUTTING VALUES FROM OUTSIDE THE PROGRAM

In this section you will begin to see th
by their names without knowing what th

values within the program itself. In this section

you will write new programsin which
PITCH and DURATION have no known values at the time you write the program.
program, by a process called input.

Instead, they take on values when you run the

PROGRAM SOUND$

USES
AFFLESTUFF 3

VAR
FITCHs, DURATION : INTEGER

BEGIN

TE (FITCHy DURATION)
END.

You have made two edit
you deleted the numerical Vv
sure to use zero in the par
changed the value 200 to

orial changes. In the first line of the BEGIN/END block
alue 30.5 and inserted the expression “PADDLE (0)”. Be
entheses following PADDLE and not O. In line two, you
the expression “PADDLE (1)".

R and run the program. Liste

What is going on? How is the sound being controlled? Why did it change?

To get more information about what is happening, let's add one new statement to
the program. Go back to the EDITOR and put the cursor just to the right of the
semicolon in the DURATIO t statement. Type I. Insert a RETURN and
this new line:

N assignmen

e real power of being able to refer to values

e values actually are. In the programs you
have written so far, the variables PITCH and DURATION were assigned numeric

GENERATING SOUND 65

S e ()ll')ll‘aREllJqua h g.||||.|| I h .|| don, need ano heronea
nc y tt ebel IgOte|I eyou t i t O t
i ||d Exit Via C l RL-C. | lle new BEGIN/EI‘]D b|OCk SIIOUld |00k ||ke thlS.

the e .

GIN
BEPITCH $= PADDLE (0)#
t= PADDLE (1)%

NOTE (PITCH» DURATION)
END.

i block
i tic and are used to make the
in the program are cosme e bloc
Mo?;ro:ot?:azp?ﬁ: spacespinside the quotes in the WRITELN stateme
easi . .
i | see.
oW hoﬁze;}s;rﬁ ::: Q U R. Watch and listen. Change the paddie knob
Now run :
i e R a few more times. oo
e at'nde“":)u ran the program you heard a sound and yo:silrs)grzil::j b;)three
erean e);r on your screen near the top. The numbers w%rdle Fiings. What Io
num:ersaizz The numbers changed when you changed pa
blank sp .
| text to appear on
S A Session 3 that WRITELN causes
know from Sessio . pesr ot
Well,g’:nu 33??:% is a new situation. In Session 3 you used a statement
your screen,

7
WRITELN (/HOW NOW BROWN COW’)

ouareusinga
and found that the text between quotes appeared on the screen. Nowy
different version of WRITELN:

’ ION)
WRITELN (FITCH» ’ » DURAT

rmore, these
There are no quotes around the words PITCH or DURATION. Furthe
e ! |
of variables. e rameing
Wo:/c\jli:trsgﬂigva:zzcovered is that when youtuseqae:)r:eucvclzovt?gt\;anr:: enamen®
ent value of that vari . C "
et Stat:(r::nlt)’ettr\l/eeg:\";uotes in WRITELN are also written literally on t
o8 rs. .
ore thred arc):t as a separator between the two numbe or sereen. But how did
scl'eSen o you know how those numerical values go:rsnpyaddle e o
ehant did change the s}
to run? Well, you g Yo
e fr(:gvcrau?he new words PADDLI_E (0) and PA;DIgLSEC(a}) PiDDLEyis e
progr:rmisd?izz up in these facts, and here it II‘T(. lnv;;?iz;e :\ thai PADDLE 1o 20
answ cts, e ‘
] nction is very muc . me. @
examplcei o Ifggc‘lt'lr?g.dﬁffeurence is that avariable can only get its value by having
type and a value. er .
v}gl)ue assigned to it explicitly, as in

66 APPLE PASCAL

whereas a function gets its value by some process of its own which depends upon
the way the function is defined. The value of the PADDLE function depends on two
things: first, whether the number appearing in parentheses after the word PADDLE
is a zero or a one; second, the physical setting of the corresponding paddle control
knob. Whenever during the run of a program, a statement containing the PADDLE
function is reached, the computer inputs one of the two paddle controls attached to
your Apple and the function returns a value, as we say, corresponding to the setting
of the knob.
In your program, therefore, the statement

FITCH ¢= FADDLE (0)

first causes the computer to inputa number corresponding to the setting of the knob
on paddle zero. Then the function takes on avalue equalto that number. Finally, that
value is assigned to the variable PITCH.

You may have wondered where PADDLE was defined since its name does not
appear in the declaration section (the part of your program that precedes the
BEGIN/END block). PADDLE, like NOTE, is defined in APPLESTUFF. Both are
brought into your program by the compiler as a result of the USES block at the
beginning of your declaration section.

function. Think of a variable asa place inthe memory of the computer where an item

statement, it means that you want to put some new data in the place in memory
corresponding to that variable name. Wheneveryou put avariable name ontheright
side of an assignment statement or in @ WRITELN statement or almost anywhere
else, it means that you want the variable name to be replaced by the data currently
located in that variable’s place in the memory of the computer.

In contrast, think of a function as a process that produces an item of data
whenever the function name appears in a program statement. With this idea inmind,
you will see that it would be wrong to use the statement

FADDLE (1) $= FLTCH

in a program, since PADDLE is not aplace in the computer memory, and so cannot
have a value assigned to it by an assignment statement. Another way of saying the
same thing is that PADDLE can give avalue to something else, but PADDLE cannot
be given the value of something else. Instead, the value of PADDLE or any other
function is determined strictly by the rules that define it. In Session 6 you will learn
how to define functions of your own and see how they work in more detail.

GENERATING SOUND 67

A variable is a place in memory where asr;
item of data is stored. A function is a proce

that produces an item of data.

L) : ’ “ y f L)
VV'Iat IS the p t n I A ” yOu d|d ge a y p
i t e of functuio DDLE. We , n't t an t e con ||(:t
error W|Ie|| yOU yla 1 the plogla , SO ' I\DDLE I.IIUSt be Ol the same type as I l CI l,
p i g oum alSO otl

Wlllc“ SOf t el te el.Y u ay ave : 1 tCed lhat the Values tlell]lllsa|e||()t
I|egative. |llyfaCt ADDLE returns o ||y | tegeIS |I0m zero th|0ug .

’ h 255

4-6 THE FOR STATEMENT |
i i f typing R again

i e. You probably got tired o
Lt xS g wi m%rifferentppadme settings. Well, Pascal has a

i ile experimenting with | Basca e o
a??ean?:rl\r: mglt will F;ave you that bother. Go ba.ck tont:e EDITOR o]
:raesent version of your program with the following one:

PROGRAM SOUNI'#

USES
AFFLESTUFF#

BEGIN

ALDLE (0)$
URATION = PADDLE (1)4

iNCH’E (PITCHs DURATI

END
END.,

g g p g K ike “ IS new versio lhere are
ou VV|“ be changi our rogra to |OO |

y ' ’
SeVYe|a| Steps to t' IS ed't”lg]Ob, but you ” soon see the adva tage I irst IIISEH]

i inserta
COUNT” in the VAR block. Second, with the cursor to tpe r;ght of BEGIN,
RETURN, two spaces of indentatiop, and the two new line

68 APPLE PASCAL

FADJUST? L CJUST RCJUST C(ENTER <LEFT,RIG

on the left half of the Pascal page and on the right half
HT»UFy DOWN-ARROWS: [<ETX> TO LEAVE]

Now is a good time to experi it wi
) periment a bit with
right-arrow and left arrow keys a few times. Use ttl‘:s rf\g?l\:-u o ey s Press the

Now co i
Tyme CTrgis_lt-h&;z:glc. Type CTBL—L. The second line is now correctly indented
200 0 baok o o Enl1)ore. The tl'-nrd and fourth are also okay. Finally, type CTRL-C
ek o beth IT level with the new indentations still intact. (,You can'tESC
e o CTR,L—)II_ aﬁ(\j/vg):r,gttéo: can;xlways undo anything you've done by using
, -0 keys before pressing C -

Mo O ke p ng CTRL-C.
“COUNT,‘!OE"” ::Ls:)r toctll_'le P” in PITCH in the WRITELN s)»tatement. Insert
characters Io’ng so pya’:(te of i?il-s-gr'w (t\r(mzurr' V:TLT!S‘LN he Pasal oaow more than 40

M » SO '|g alf of the Pascal page.
o o ::e It:les Etg;or;:les;:?ggg ;h; c,I)osmg parenthesis of the N(;)Tg Iit)re. Now typel

. . Press th - i i “ ”

CT}I:{.;: bac!(to the EDIT level once more. ¢ (Sitanow fwice, Inser END" and
exantly llii:ct):: g:g Ss:?er;a?et all the changes and your new version should look
e at the start of this section. Check it carefully. Fix any

Now you are ready to run the i

ere new version. Put the pad
R. After compilation, play wi Mo the preer) and type Q
s th i e

happoning? play each paddle knob while the program runs. What is

First, there are man i
b y text lines on
The first number in the |j ihe screen, and three numbers on each line.

settings.

Now i i i .
knobs allst:eg\:(a)d:tg:ﬁ t:) find out which paddle is which and to mark them. Turn both
type R again Noytice ; he eft (cqunterclockwise). Ifthe program has stopped runnin
just one of ihe e ezerosincolumns two and three, and the silence. Slowly turgn,
numbers starts chan S, Watch the numbers, and listen. If the second column of
zero. But if silence rggagir?:gggltjrf;i:ihgaring i, Men youare holding paddle
have paddle one. Mark the paddies co:rezztlf::wm numbers starts changing, you

GENERATING SOUND 69

Run again with both paddles all the way to the left. Turn paddie one to the right
slowly until the number in column 3 is around 50. Now turn paddle zero to the right
very slowly and listen.

You probably heard a sequence of steadily increasing pitches at first, while the
numbers went from one to 50. After that the pitches were fairly random.

Turn paddle zero to the right until the pitch value (column two) is about 30.Turn
paddle one all the way to the left and then very slowly to the right.

As soon as the duration value (column three) changed from zero you heard a
sudden shortening in the length of time the note was held. Small numbers gave short
notes and larger ones gave longer notes, except that zero gives the longest note.
(You may also have found that the duration numbers suddenly got small again
despite the fact that you continued to turn the knob slowly to the right. Don’t worry
about that now. It happened because your program input the value from paddie one

right after paddle zero. The results can be inaccurate unless more time is allowed

between the two inputs.)

4-7 GRAMMAR RULES FOR THE FOR STATEMENT

Now let's see what these new program features have done. You've probably
guessed that the FOR statement is the cause of these 500 lines of output to your
screen. lts effect is exactly the same as if you had duplicated the original four-line
BEGIN/END block 500 times. Instead of having to duplicate the program block
many times, all you have to do is put the block in a FOR statement, sometimes also
called a FOR/DO loop, or simply a FOR loop.

The FOR statement has this general form:

FOR variable := initial-value TO final-value DO statement

where “statement” after DO, means either a single statement (called a simple
statement) or else a block of statements preceded by BEGIN and followed by END.
In Pascal, a BEGIN/END block is also called a compound statement. As before, you
should think of BEGIN and END as giant brackets that enclose the compound
statement. A compound statement can contain other compound statements within
it.
Now let's see how the FOR loop works. It starts out by setting the value of the
variable equal to the initial value (COUNT :=1in your program). Next it tests to see
whether the variable has already exceeded the final value (500 in your program). If
so, nothing further happens and we say the loop is exited. Otherwise the simple or
compound statement after the word DO is executed once. In your program, itisthe
following compound statement that is executed:

BEGIN
FITCH &= FADDLE (0)}%
DURATION = FADDLE (1)7%
WRITELN (COUNTy “y FITCH»
NOTE (FITCHs DURATION)

END

’ ‘y DURATION)

70 APPLE PASCAL

Then, one is added to the value of the variable. Finally we loop back to the top, and
start over, seeing whether the variable has yet exceeded the final value, and then
either exiting or continuing.

In your particular program you can see that the compound statement shown
above must be executed 500 times, since the initial value of COUNT is one and the
final value is 500.

4-8 REFINING THE PROGRAM

You have successfully written the prototype of all computer programs. It takes
input from the outside world. It processes the input, and it generates output. Every
useful program performs these three functions.

Inthe process of creating the programyou have learned how to write a FOR loop,
how to use the PADDLE function to getinput values, how to assign those values to
variables, and how to use the NOTE procedure to convert the variables to sound
output.

The next step is to refine the program to make it more usable. You noticed, for
example, that the range of pitch values between zero and fifty gave you a musical
scale, plus silence. Higher values produced random pitches. Itwould be nicetodo a
little more processing on the input from paddle zero to force the numbers to be in the
range zero through 50. Let's see how to do this.

You saw earlier that the PADDLE function always returns values between zero
and 255. One way to keep the PADDLE numbers from being too bigisto divide them
by a number bigger than one. For example, if you divided all the PADDLE values by
two, you would get numbers between zero and 127.5. On the other hand, numbers
like 127.5 are not integers, so won't that lead to one of those type conflicterrors you
saw before? Not to worry. Pascal provides a special kind of integer division
operation that first does the division and then throws away the fractional part if there
is any. The operation is called DIV, and the following experiment will show how to
use it.

Enter the EDITOR and insert “ DIV 5” at the end of the first line containing the
PADDLE function, as shown here:

FITCH &= PAODLE (0) DIV 55

Quit the EDITOR and run this new version.

As you see, except when you twist the the knob on paddle zero all the way to the
right, PITCH stays within the limits’that NOTE needs in order to produce a musical
scale.

Now let’s see whether we can fix up that occasional inaccuracy problem caused
by inputting paddle one too soon after paddle zero. This difficulty is one of timing
caused by the way the computer works, not by your program. Get back to the

EDITOR and insert this line immediately after the semicolon of the PITCH
assignment statement:

GENERATING SOUND 71

i i tbe sure to declareit. AtEDIT
u have introduced a new variable, WAIT, so you mu.s u oclar
:;c\)wl, move the cursor to the space after CO.UNT andinsert“, WAIT”. With these two
changes your program should look like this:

PROGRAM SOUNID$

USES
AFFLESTUFF #

BEGIN
FOR COUNT := 1 TO 500 DO
BEGIN

WUR N ¢= PADDLE (1)#4
l[o.lg;\?élfg (COUNT» “ ‘y PITCH» ‘y DURATION)#
NOTE (PITCHs DURATION)
END
END.

Run it and experiment with paddie one to see ::hether the durations increase
i u turn the knob from left to right. '
Ste?T(::ayf?xoxoarisy.OBut how does it work? What you did was to insgrt a partlcul;;:y
simple form of the FOR statement batween the two state_ments thatinput the pih z
settings. This form of the FOR statement probably looks illegal to you beqause &;
is no other statement at all after the word DO, but only a concluding semwolonb e
said earlier, when we defined the FOR statement, that there always h’ad ':10 ea
statement (either simple or compound) after the word DO. lIsn't there a
i
conlflroa,d;ztclioi?you understand why, then you're in good shape for.sortlng out som?
other seeming contradictions or surprises in the way Pascal is defuneq. The wayl?ud
of this contradiction is simply to recognize thatone klnq of statementis the so cgde
null statement—that is, a statement whose text contains no characters. (Tne i .ea
may sound silly.at first, but then so did the idea of zero when folks were still using
merals. .
Rogg?i:lfjac‘ta, the)little FOR statement you just added to the program dqes |ndeetI::
contain a statement after the word DO and before the semicolon. It is the nu
. You may not see it, but it's there. .
Statgrai?tgi\\(/gn thaz,it is legal Pascal, what does it do? Well, like your O_LrI:‘er Ioc:p,
which counts from one to 500, this inner loop couqts from.one'to three.. e olu er
loop executed its big compound statement 500 times. Likewise, the lnnef; otog;
executes its null statement three times each time around the oute_r loop. Ine Trf i
does nothing, three times. You may think that it ta.kes no clock time t.o dp nc|)f _I[:g
three times; but if so, you've forgotten that ittakestlmeto.do the counting itself.
WAIT variable starts out with a value of one, and each t.lme through the Ioop,_Ic_)t:\.e
gets added to it and its value gets tested to see whether it has exceeded three. This

72 APPLE PASCAL

all takes time—n.ot much, but enough to let things settle down between paddle
inputs. And that is why the second paddle value is now correct.

_Run the lina! version of your program a few more times. Check out a pitch of zero;
a pitch of one with aduration of one. Compare a pitch of 12 with one of 24,36,and 48
What scale does Apple Pascal use? , .

You may have wanted to ;top the program while it was running to inspect the text
on the screen,_and then continue execution. Apple Pascal has such a facility. While
your program is running, type CTRL-S. Now touch a few other keys at random (but
not the RESET key!) After a few seconds, type CTRL-S again. The CTRL-S fac(ility
may be used at any level of the Pascal system.

Watch Qut for this user trap: by accident you type a
CTRL-S W|thout_ knowing it, and suddenly it appears that
your computer is broken and will not respond to any

keypresses. If this happens, just type another CTRL-S
and continue.

Note that CTRL-S only stops programs that generate output to the TV screen. It

will also stop system programs that generate screen
output, such
and nearly anything else. g e e EDITOR

4-9 STORING PROGRAMS ON A SEPARATE DISKETTE

The work.file, APPLEO:SYSTEM.WRK.TEXT, is exactly the right place to keep a
program while you are in the process of writing, running, debugging, and changing
it. When you enter the EDITOR, the workfile is automatically loaded into your
workspace _for easy editing. When you leave the EDITOR with the Q U option, the
workspace is automatically written back into the APPLEQ: workfile. When you ty'pe R
at the COMMAND level, the computer automatically compiles the workfile on
APPLEQ:, stores the resulting code file on APPLEO:, and then executes the latter.

Because the' workfile is such a good place to keep a program during
development, |'t is also a very bad place to keep a finished program. There can be
only one yvquﬁle on APPLEO: and if the completed program remained there it would
be very difficult to work on any other programs without destroying the finished one.
So, you should move a program out of APPLEO:SYSTEM.WRK.TEXT as soon as no
further work is planned for it. This section will show you how to do that.

You may have noticed in your earlier work that the system files on APP :
occupy about 90 percent of the space on your diskette. In fi\ct, version 1.1 of Atﬁl?—::
Pascal leavgs only 32 blocks of free storage out of the 280 block total. Although a
block contains 512 characters (bytes), the shortest possible text file is four blocks
long, and the shortest code file is two blocks long. This means that you will need at
.least 6 free blocks on APPLEQ: for both forms of the workfile, even when the program
is only a few dozen characters long. For this reason itis a bad ideato move a copy of

a finished program from the APPLEO: workfile in i
‘ : to a new file on tha
diskette, even though it is legal to do so. ! crowaed

GENERATING SOUND 73

The following is our recommended method of moving a copy of the APFLEO:
workfile into a new file on a separate diskette. (Other methods exist, but you are
somewhat more likely to make errors if you use them.)

1. Move the APPLEQ: workfile into the EDITOR workspace for a visual checkout.
2. Write a copy of the workspace on to a second diskette.

To do this you must already have a Pascal formatted diskette with enough free
space on it to hold the new file. It need not contain any of the system files, however.

For the following steps we will assume that you already have such a formatted
diskette and thatits name is BLANK:, the name that the FORMATTER program gives
to freshly formatted diskettes. If you do not have one, now isagood time to formata
blank diskette, using the procedure specified in Appendix A-3. (If youdo nothavea
blank, you can temporarily use any one of your system diskette copies, such as
APPLE3:, to store the workfile copy. In that case, skip the next paragraph, which tells

how to change the diskette name.)
First, let's change the name of BLANK: to one that suggests you will be using the
diskette to store your programs. PROGRAM: is the name we'll use in this

description.

1. From COMMAND level, type F C to enter the FILER and go to the CHANGE level.
The prompt line will read “CHANGE ?”

2. Open the disk drive door. Remove APPLEO: and insert BLANK:

3. Type “BLANK:” and press RETURN. A second prompt line asks “CHANGE TO
WHAT ?” -

4. Type “PROGRAM:” and press RETURN. If all goes well, the third line cf the
screen will say “BLANK: — — > PROGRAM:”

5. Remove the diskette, now named PROGRAM:, from the drive and insert
APPLEO: Use a felt tip pen to write the name on the diskette label.

6. Type Q to quit the FILER.

Incidentally, you can also use the FILER's C(HANGE command to change the
name of a file on a particular diskette. Just add the file name after the colon at the
end of the diskette name when responding to the “CHANGE ?” query. Then type the
new file name in response to the “CHANGE TO WHAT ?” question.

Now that you have a diskette named PROGRAM: let's see how to move a ccpy of
your workfile from APPLEO: to PROGRAM:..

1. From COMMAND level, type E to enter the EDITOR. This moves a copy of
SYSTEM.WRK.TEXT from APPLEO: to the workspace where you can check it
out visually before taking the next step.

|
|
|
|
1

74 APPLE PASCAL

2. Type Q to quit the EDITOR. As usual, you must choose a further option at this
point. (You have used the U, E, and R options in the past.)

3. Type W. This means that you want to write the contents of the workspace into a
diskette file. You should see the following screen prompt

FQUITS
NAME. OF OUTFUT FILE(ZCR:> TO RETURN) —-

4. Remove the APPLEQO: diskette from the drive and insert PROGRAM: Be sure the
door is closed tightly.

5. Type CTRL-A followed by PROGRAM:SOUND.TEXT followed by a RETURN.
(If PROGRAM: already contained a file named SOUND.TEXT, you would be
asked whether or not to destroy its previous contents.)

6. Type CTRL-A a few times to read both sides of the Pascal page. You are still at
the QUIT level. If all went well you got a message telling how many bytes long

your file was, and you are being asked whether to “E(XIT FROM OR R(ETURN
TO THE EDITOR?”

7. Remove PROGRAM: from the disk drive and insert APPLEO:

8. Type E to return to COMMAND level. (WARNING: If you type R and APPLEO:
is not in the drive, the screen goes blank and you will have to reboot.)

You have succeeded in writing a copy of APPLEO:SYSTEM.WRK.TEXT into the
file SOUND.TEXT on your PROGRAM: diskette. Unless you plan some additional
work on the program, this is an excellent time to clear out your workfile.

To clear the workfile from COMMAND level, type F N Y Q, returning to
COMMAND level.

If you did the last step, the old workfile is gone from APPLEO: and a copy is now
on diskette PROGRAM: in the file SOUND.TEXT. /tis a good idea now to review all
the above steps and remind yourself what was going on during each one.

4-10 RECALLING PROGRAMS FROM A SEPARATE DISKETTE

Now we come to the other half of the process: getting a file back from another
diskette into the APPLEQ: workfile for further editing or running. In the following

exercise you will move SOUND.TEXT from the PROGRAM: diskette into the
APPLEO: workfile.

1. From COMMAND level, type F T to enter the FILER and go to the TRANSFER

level. The prompt line at the top of the screen should ask the question
“TRANSFER ?”

GENERATING SOUND 75

2. Remove APPLEO: from the disk drive and insert PROGRAM;:, closing the door
tightly.

: . If all goes well, the next
PROGRAM:SOUND.TEXT and press RETURN ‘

P Try::\pt asks “TO WHERE ?” (If not, you will be told so and will be bounced back

fo the FILER level. You probably left off “ TEXT". Type T and try the transfer

again.)

4. Without changing diskettes, respond to the new prompt by typing APPLEO;SYS;
. TEM.WRK.TEXT and pressing RETURN. The prompt line now asks you to inser

APPLEQ:.

5. Remove PROGRAM: from the disk drive,‘ inser.t APPLEp:, and lh:n pre::fter:e
spacebar. |f APPLEQ: already has a workflle'on it, you will be asked as awomél
measure whether or not to destroy the workfile. Normglly you yvant to, soo o
type Y. If there is no workfile, you will not see the question. In either case you
know that the transfer was successful when you see the message

FROGRAM$ SOUND TEXT '
s APPLEOSSYSTEM WRKL TEXT

6. Press Q to quit the FILER. When the COMMAND prompt appears, type | to
reinitialize the system.

7. When the COMMAND prompt reappears, type E and verify the transfer with your
own eyes.

Sections 4-9 and 4-10 call attention to the only serious shortcoming of worktmg
with a single-disk-drive system. On a two-drive system you always ha;\ge a;Noof
diskettes (APPLE1: and APPLE2:) in the drives, and gach of them hasagrga '?n !
free space left over after that taken up by the system files. Consequently |'t isa tS| tt':at
matter to make a copy of the workfile or to move a copy of another file into

i i having to handle the diskettes. ' . .
wor;;l:: ivr:Irt:i(r)\Lét, howe\?er, the fact that while using this book you will only nobtlc;ethui
shortcoming when you decide to move copies of programs back and forth betwee
the workfile and your program diskette. That doesn’t happen very often.

SUMMARY

During this session you have learned the following new things about Pascal on
the Apple:

® You saw that APPLESTUFF is a collection of built-in procedures located in
APPLEO:SYSTEM.LIBRARY.

® You used NOTE (one of the APPLESTUFF procedures) to generate sound.

76

APPLE PASCAL

You saw that NOTE needs two values. The first determines the pitch and the
second the duration of the note.

You learned that variables in Pascal are declared in the VAR block in a program.

You discovered that reserved words in Pascal cannot be used for variable
names.

You saw that built-in words in Pascal can be used for variable names but the
original purpose of the name is then lost to the program.

You saw that variables in Pascal have three properties; name, type, and value.
You used the PADDLE function to provide input to a program.

You saw that the FOR loop causes the simple, compound, or null statement
following DO to be executed a specific number of times.

You used the A(djust feature of the EDITOR to adjust the indentation of a
program.

You used the DIV function to accomplish division with integers.

You used a FOR loop with a null statement after DO to produce a delay in a
program.

You used CTRL-S to stop and restart program output to the TV screen.

You learned how to change the name of a diskette or file using the C(HANGE
function in the FILER.

You learned how to use the Q W exit from the EDITOR to move a copy of the
workfile on APPLEO: to another diskette.

You used the TRANSFER function in the FILER to move a program from a
separate diskette to the file SYSTEM.WRK.TEXT on APPLEOQ:

Tofinish the summary, the tables marking your progress through the Pascal level

structure should be updated to reflect the ideas you have learned in this session.

GENERATING SOUND 77

Table 4.1A Amplified table of the EDITOR levels of Apple Pascal. Those features
studied in this session are shown in bold face type.

Exit to escape
from accidental
entry.

E(ditor ESC RETURN orQ E

Q(uit editor and R
U(pdate workfile
E(xit with no update a
R(eturn to editor
W(rite to named file RETURN

Cursor Moving Commands

Right-arrow (move cursor right)

Left-arrow (Move cursor left)

CTRL-L (Move cursor down)

CTRL-O (Move cursor up)

RETURN (Move cursor to beginning
of next line)

Spacebar (Move cursor to next
character)

Text Changing Commands
I(nsert text ESC
CTRL-C (Normal exit
D(elete text
CTRL-C (Normal exit)

ESC

Formatting Commands

A(djust indentation
CTRL-C (Normal exit)

78 APPLE PASCAL
GENERATING SOUND 79

Table 4.1B Amplified table of other command levels of Apple Pascal. Those

features studied in this session are shown in bold face type. Table 4.2 Cumulative Pascal vocabulary. New words introduced in this session

are printed in bold face. (Code: a = declared in APPLESTUFF)

Exit to escape
from accidental

oniry. Reserved Built-In Built-In Other
Words Procedures Functions Built-Ins
I(nitialize the system
PROGRAM WRITE Integer Types
R(un program in workfile USES R TELN @ PADDLE NTEGER
VAR a NOTE
F(ler | BEGIN Units
Q(uit the filer F FOR APPLESTORE
N(ew workfile RETURN To
V(olumes on line Do
L (ist the directory RETURN END
C(hange name RETURN piv
T(ransfer a file RETURN
D(ate setter RETURN
? Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half of CTRL-A
Pascal page
CTRL-S Stop and restart CTRL-S

screen output
RESET Attempts reboot of Pascal | QUESTIONS AND PROBLEMS

1. If you are in the EDITOR, what keystrokes are necessary to clear out the workfile
and return to the editor?

2. How are the name and type of variables established in Pascal? What about the
value?

3. What is meant by “type conflict” in Pascal?

4. Discuss the similarities and differences between a function and a variable in
Pascal.

' 5. Write a Pascal program to display thenumbers 1,2, ..., 14,and 15 vertically onthe
screen.

6. Write a program to cause the computer to play a scale with pitches equal to 12,
13, 14, ..., 23, and 24.

7. Explain how you would change a diskette name from BLANK: to TAXES:.

8. Assume you have a program named SOUND.TEXT on diskette PROGRAM:..
What steps must be taken to change the name to FURY.TEXT?

80 APPLE PASCAL

9. Suppo ini iti
SYg?rESI\: \X/oRuKtlraé/;Tfln;ht:gewzgggLsoprogram and it is currently in the file
. 3 . diskette. Explai
- plain how
program to a diskette named ABC: where it will have the name Sg)N:T(]:O'\II'?E)(t$e

10. Assume the program SON i
IC.TEXT is stored on the di
‘ : isket :
you do to move this program into SYSTEM.WRK.TEXT on th;eAAI;I?’Eé(;/'V:;L;nt:JS’:
: e’
1. E i] i
xplain how you would insert a line in the middle of a Pascal program. Assu
. me

you begin in the EDIT mode.

12. Explain how you would delete a line in the

you begin in the EDIT mode. middle of aPascal program. Assume

BEG 'lv I O tv EIID! etc) and bUHt n wo dS (' e Wl“ E a d IJC E) (

14. Explain precisely how a FOR loop works.

15. What is i
a simple statement? A compound statement? A null statement?

SESSION

FIVE

INVENTING NEW WORDS: PROCEDURES

In the last two sessions you have been using several different kinds of
statements. One kind was the assignment statement, such as

FITCH ¢= 20
Another was the FOR statement, an example of which is

FOR COUNT ¢= 1 TO 10 DO
NOTE (50, 20)

We have not given a precise name to other statements that you have used, such

as

WRITE (‘HOW NOW’)#
WRITELN (’/BROWN COW’)

and
NOTE (FITCHs DURATION)

one of these so-far unnamed statements isa
different kind of statement (especially if you are familiar with other programming
languages). In Pascal, however, they are all examples of a single kind of statement,
called a procedure statement, or a procedure reference, or a procedure call.
Procedures and their close relatives, functions, are the main topic of this session
and the next one. As you develop aclear picture of the significance of the procedure
idea, you will see why it is that Pascal has only a very small number of distinctkinds
of statements. In fact, there are only nine different kinds of Pascal statements, and
you already have used three of them. In Sessions 7 and 8 you will use three more, O

things are moving right along.

You may have decided that each

81

82 APPLE PASCAL

SESSION GOALS

y

IOSta t with , You wi IleVleW useoft el OHState e ttOgelle ater 1usical scales
t at gO Up “(] p th“ a(l d, W'th t e DOVUIJ ' O ‘Nold, gO dOVV“ alSO YOU wi I use t e
ED‘ IOH S C O’ B U' I E” cor]a”d to dupllcate pIOgla li 1es and to move teXt

lllleS “O n one place to anot er. YOU| ain aCthlty, IIOWG\/el, VV'” be tO dei ne

5-1 STARTING UP

This session st i
arts off like all the previous ones, so the instructions this ti
imeare

a b't ore co CiSe If Oou need nore deta s, t m 'Ie ['I r r
- || , U tot sta tO t ep eViOUS SeSSIO .

- .
Boot up Pascal if your computer is off.

® Enter the FILER and set the current date.

8 Ent i
er the EDITOR and inspect the current workfile.

- -
Clear out the workfile, if necessary, by typing QEFNYQE

® Press RETURN to com

press plete entry into the EDITOR, and then enter INSERT

At this point, the INSER
: ' T prompt i
type in a new P ptis atthe top of your scree
Study the foll ascal program and move it into the EDITOR" ooy aroready to
owing program and then type it in $ empty workspace.

PROGRAM SCALESS

- DURATION := 1004
~ FOR FITCH := 8 TO 20 po
“ ‘yprs (FITCHs DURATION)

B,

INVENTING NEW WORDS: PROCEDURES 83

CTRL-C out of INSERT. Read for typing errors, repair any, and then run the
program.)

As the program name implied, this program creates a fairly musical scale starting
at about C below middle-C and rising in pitch one note of the chromatic scale (the
white keys and the black keys) at a time until it reached middle-C.

Suppose you wanted a descending scale instead. Well, let's do the obvious thing

and see what happens. Return to the EDITOR and change the FOR statement so that

it reads:

NOTE (PITCH» DURATION)

Now run the changed program.
Well, that didn’t work. The program comp
errors, but no sound came out. Let's try again.
Return to the EDITOR. Change the FOR statemen

iled correctly and ran with no reports of

t again so thatitlooks like this:

FOR PITCH 3= 20 DOWNTO 8 Do
NOTE (FITCHy DURATION)

Run the result.

This version of the FOR stat
reserved word, DOWNTO, to your voca
means that the variable is to be increase
Notice, however, that itis not illegal to use
the final-value. The result in that case is that
since the variable begins with a value thatis a
you want a FOR loop to countdown instead of up,
DOWNTO for TO.

Incidentally, you now know everything
statement. There are no new words and no new gra

ement works, and you have added another Pascal
bulary. In the FOR statement the word TO
d: DOWNTO means it is to be decreased.
TO when the initial-value is greater than
the FOR loop is not executed at all,
Iready greater than the final value. If
you have to say so by substituting

that there is to know about the FOR
mmar rules to be learned.

5-2 DUPLICATING BLOCKS OF TEXT

You can now make a scale that goes up or down. Let's combine the two: begin

with a rising scale and follow it with a descending one. Furthermore, let's make the
descending scale happen in half the time of the rising one. The main program block

will look like this (but don’t type the changes yet):

BEGIN
DURATION 3= 100%
FOR PITCH := 8 TO 20 DO
NOTE (FITCH» DURATION)?
DURATION (= S0#
FOR FITCH $= 20 DOWNTO 8 DO
NOTE (FITCH» DURATION)

END.

84 APPLE PASCAL

Since the text of the first three lines is very similar to that of the second three, and
both are similar to the present text of your program, it would be nice if there were
some easy way to make a duplicate copy of what you now have and then patch up
the differences. As you have probably guessed, we wouldn’t have brought up the
idea if it weren’t possible. Here goes.

Return to the EDITOR. Move the cursor so that it is on top of the D in the
assignment statement

DURATION = 100

Now enter DELETE mode and press RETURN three times. Then CTRL-C out.

It probably looks to you as though things are getting worse. We said that you
were going to make a duplicate copy and we've left you without any copy. Butdon't
lose faith; magic is around the corner.

Without moving the cursor, type C and enter COPY mode. The top line of your
screen contains the COPY prompt line:

+COFY! BOUFFER F(ROM FILE <ESCH

It tells you that you can type one of three things: B, F, or ESC. Press the ESC key.
Evidently this is the escape route out of COPY if you accidentally fall into it from the
EDITOR.

Type C again to enter COPY. Now type B.

Wonder of wonders! The three lines of text you previously deleted are now back
in your program, and you're back at EDIT level with the cursor on D where it started
out. Now comes the best part. Type C and B again.

And so, as advertised, you have made an exact copy of the original three lines.
Your main program block should now look like this:

BEGIN
DURATION = 100%

FOR FITCH := 20 DOWNTO 8 DO
NOTE (FITCH» DURATION)
END.

! You're still not where you want to be, but let’s stop foramoment and take note of
| il the way copy worked. The text that you deleted from the EDITOR’s workspace was
ikl not totally destroyed. Instead it went into the insert/delete buffer. This is the same
i | buffer where your text is stored when you enter INSERT and then type the text on

g your keyboard. Thatis why itis called the insert/delete buffer. (We'll simply call it the
“ | buffer from now on.)

INVENTING NEW WORDS: PROCEDURES 85

Whenever you enter COPY and type B, a
copy of the current contents of the bgf_fer is
inserted into the text at the current position of
the cursor.

From the above description, you can see thgt whenever.you Qeletf Zomr:eetrz)?:
from your workspace, you can get it back by typing C B. It will be mselzrtt_e \;v ere |
v;as before (provided that you have not moved the cursor after the deletion). ,
for an accidental deletion, “C B” is the “Oops!” button. i comtains whatever

The other thing to note is that after you type C B thi buff(ta;lsrl C(c):gy ans whatene!

i i et ano
it had before. So if you type C B again, you g
::ixrtscl)r location. That is exactly what happened in the pregent case. |f you had
wanted 10 copies you would have had only to type C B 10 times. Three changes
Now let’s get back to the editing job on the SCALES program.
ave to be made:) Lo)
; Change the first occurrence of “20 DOWN”TO g_to ”8 TO 20”.

Change the second occurrence of “:= 100” to “:= 50”.

Insert a semicolon after the first FOR statem’ent. o it after the

Read that last instruction very carefully. Don't Eut thgggrr;ltgct)ecr)nen?begms e

i i R statement. Every
DO, since thatis not the end of the FO newin
‘ i i und statement that is
rd FOR and ends with the simple or compo
:zge:t?sd The FOR statement is on two text lines in the prgsent example, so the
. i f the pair.
i has to go at the end of the second line o
Sen?f'%(;l?nnistake yogu had put the semicolon after the DO;h(te result v;ztgg.h?gee l?:egg
i i been what you w :
atically correct but it would not have ‘ : .
gtr:tr:r:ent wo{:ld have counted from 8 to 20, each time executing ouroolp? f:;gi,;:te
null statement. Then the NOTE procedure, .the statement after tfh;F S ,
would have been executed exactly once with a PITCH value of 21.

A misplaced semicolon isthe egsiest Pascal
user trap to fall into. To stay out of it, you needa
very clear mental picture of the structure of
each kind of Pascal statement.

k
If you made the three editorial changes, then your program should now loo
exactly like this:

e

i
i

86 APPLE PASCAL

PROGRAM SCALESS

USES
AFFLESTUFF

VAR
FITCHs DURATION @ INTEGER

BEGIN
DURATION := 1003

1 i= 20 DOWNTO &
NOTE (FITCH, DURATION) ——
END.,

There is no semicolon af i
ter the final FOR statement
ENtD (Remember, BEGIN ang END are not statemerL?te
e :een statements, not after statements.
egd the program over carefully. Then run it.

cause it is bracketed by the
s.) Semicolons are required

5-3 DEFINING NEW WORDS

You now hav
€ a program that does one up-scale and one somewhat shorter

down-scale. In fact, if the
. , computer knew what i
DOWN, then you could write the main programyglgg(egz KNG acout by UP ang

BEGIN
UFs
LIOWN

END.

Y u (:Ould aison ke or ger ar d more mpl ate rogram ery easil Ch as
.
o] a | a co p IC d p g Sv Yy S y Su

BEGIN

UF'i DOWNS UF; UF; ‘4 I
END. i UF$ DOWN

INVENTING NEW WORDS: PROCEDURES 87

Enter the EDITOR and put the cursor on the B in BEGIN. Enter DELETE mode.
press RETURN to delete the whole line. CTRL-C out of DELETE. At EDIT level
again, move the cursor to the E in END. Type C B.

You have deleted BEEGIN from its previous location and inserted it six lines down.
In effect you moved it by this sequence: delete, position cursor, copy buffer. No
other command for moving text exists. You only moved one word, but you could
have moved a dozen lines in the same way. Now let’s finish up Step 1.
Put the cursor on the E in END, enter INSERT mode. Indent two spaces. Type the

following line:

') DOWNG DOWNS UP

UF$ L

Press RETURN at the end of the line and then CTRL-C out of INSERT.
At this stage your partially edited program text should look like this:

PROGRAM SCALESH

USES
AFFLESTUFF#

VAR
FITCHy DURATION ! INTEGERS$

DURATION (= 1004

FOR FITCH := 8 TO 20 DO
NOTE (FITCHs DURATION)#

DURATION &= 504

FOR FITCH t= 20 DOWNTO 8 DO
NOTE (FITCHs» DURATION)

END.

Now, for step 2, we need to define what UP means. Here’s the way to do that:
At EDIT level, put the cursor on the D in the first assignment statementin the text.

Enter INSERT and type these two lines:

Be sure to indent BEGIN, and to press RETURN after it. CTRL-C out of INSERT
mode. Enter ADJUST mode next. Press the right-arrow key four times to move the
start of the assignment statement under the G in BEGIN. Press CTRL-L twice to
indent all three lines similarly. Now CTRL-C out of A(DJUST. At EDIT level, press
RETURN to put the cursor at the start of the next line, the second assignment
statement. Enter INSERT again. Indent two spaces and type this line:

88 APPLE PASCAL

Fins&lé(“ptr:ss RETURN tv_vice, and CTRL-C back to the EDIT level
Jou had, doar:;vians:;;)'ri]egrtsrg;;hrouggtthe EDITOR, but it was mainly a .review ofthings
ions. i job i
should Iook e Lo ep 2is now complete and your job in progress
PROGRAM SCALESS

USES
AFFLESTUFF §

VAR
FITCHs DURATION 3 INTEGER 3

PROCEDURE UF}
BEGIN
DURATION = 1003
FOR FITCH := g TO 20 po
NOTE (FITCH, DURATION

END}
NURATION = 503
FOR_PITCH $w 20 DOWNTO 2 po
NOTE (FITCH, DURATION)
BEGIN
UFS UFé DOWNS 00WNS UF
END., F

Step 3is exactly like step 2, except forach
Follow the above editing steps on the seco
DOWN so that the com

agge in the name after PROCEDURE
nd three-line block, ch i .
Plete program now looks like this: wromne Up o

PROGRAM SCALES;

USES
AFFLESTUFF $

VAR
FITCHy DURATION ¢ INTEGER$

PROCEDURE UF;
BEGIN
DURATION = 1003
FOR FITCH := 8 TQ 20 DO

NOTE (FITCH DURAT
END) y VATION)

PROCEDURE LiOWN}
BEGIN
DURATION != 503
FOR FITCH := 20 DOWNTO g
' = Do
NOTE (FITCH, DUFR
— y RATION)

BEGIN

UF$é UF$ DOWNS DOWN
END. P

INVENTING NEW WORDS: PROCEDURES 89

Before you run the new version, note its general structure. You won't be able to
see the whole program on your screen at once, but as you move the cursor up and
down you can see the hidden parts.

Here is a way to move the cursor quickly over large distances. From EDIT level
type J, for J(UMP. The prompt line at the Jump level says

FJUMFS BCEGINNING E (NI MCARKER <ESCH

As with other EDIT commands, ESC is the escape route for accidental entry. Type B.
Type J E. These commands move the cursor quickly to the firstand last characters in
the workspace. (We won'tdiscuss the M command here. Later, you can learn about it
in the Apple Pascal Operating System Reference Manual.)

The new version of your program has a heading, a USES block, a VAR block, two
different PROCEDURE blocks, and finally, the main BEGIN/END block. Note also
that each procedure block looks like a miniature program: it has a heading and a
BEGIN/END block. A semicolon separates the heading from the BEGIN/END, and a
semicolon after END terminates the PROCEDURE. The main program block is the
shortest part of the program. (This situation is characteristic of well-written
programs, by the way.)

Now, run the program, fix any compile-time errors, and listen to the results. Go
back to the EDITOR, change the sequence of UP and DOWN statements in your
main block, and then run the new program. Go to the EDITOR again and delete all
the UP and DOWN words in the main block. Run this version.

Notice, first of all, that the sequence of scales you heard each time was the same
as the sequence of UP and DOWN statements in your main block. When you
removed all of them you heard nothing. This observation should convince you that it
is the main program block that is in full command at all times. The FOR statements
and NOTE statements in the PROCEDURE blocks only came alive when the main
program block calls upon them to do so.

In the first new version of your program the word UP appeared in the main block
several times. In each appearance, UP was a statement by itself. (Remember that
semicolons separate statements.) The same was true of DOWN. When the program
was run, each statement in the main block was executed, one after the other. When
UP was executed, it called upon its definition in the PROCEDURE UP block. At that
moment the statements in that block began execution. When they finished, the
execution of that UP statement was complete, and the next statement in the main
BEGIN/END block began execution. If it was another UP, the same thing happened.
If it was DOWN, then a call went out to PROCEDURE DOWN and the defining
statements there were carried out.

As you have seen, the power of being able to define your own procedures has two
different dimensions. First, it often makes your main program much shorter and
therefore easier to change and experiment with. At least as important, it allows you
to organize a program into meaningful units and to name each unitaccording to the
purpose it serves in the overall design.

90 APPLE PASCAL

Programs that use procedures well are
generally far easier to read, easier to under-
stanq, easier to change, and easier to get
working. Often they also make more efficient
use of computer resources; but that is a far less
Important benefit as computers get cheaper

y y
ever ear a“d |IUIIIaII resources get more

5-4 CHANGEABLE PROCEDURES

. In' your experiments so far, each
time it was called. It would beal
certain aspects of the procedur

Your UP procedure always
ould be a somewhat more inte

one of your procedures did the samethingeach

otmore interesting if
' you had some way t
€ at the time when it was called. yiocontre!

RATION = 100}

NOTE (
END}

il The new word KEY a
it procedure is unchanged.

Make simi i

ooww?osgffﬂﬂi,ﬁ.'l,“;‘gfzp',';c'“jb",“fQCE°““E DOWN block. In this case, “20
; € “KEY DOWNTO -1 '-

It side of the FOR statement di ¢ KEY - 12" 1f part of th

‘ . t disappears, you can use - i ® right
Next, edit the main block so that it looks like this?TRL Atoseeit

ppears in the first and fourth line; the remainder of the

BEG

INVENTING NEW WORDS: PROCEDURES 91

_ With these three additions to program SCALES, it should look like this:

PROGRAM SCALES)

USES
AFFLESTUFF §

VAR
FITCHy» DURATION ¢ INTEGERS$

~ BEGIN
DURATION $= 100%

END#

BEGIN
DURATION $= 503

NOTE (FITCH»
END/

BEGIN

EN

Check the text carefully. Run the program and listen. Rerun a few times and
listen for each procedure call to happen.

The first UP and DOWN did nothing new, nor did the next UP. But the following
UP went an octave higher, and the one after that went another octave higher. How
did it work? What is KEY? Where in the program was it defined (declared)? Get back
to the EDITOR and look closely at the PROCEDURE UP block and at the main
program block.

The thing that stands out in both places is the addition of something in
parentheses after the procedure name. In the PROCEDURE block, the item in
parentheses is a declaration telling Pascal that KEY is a variable of type integer. In
the main program block, we see particular integers, such as 8, 20, and 32, between
parentheses.

The next thing to note is that the same variable name, KEY, appears in
parentheses after procedure UP and also in the FOR statement within that same
procedure. Obviously, there must be some connection, and there is. KEY is calleda
parameter variable. Like any variable, it has a name (KEY), a type (integer), and a
value. However, this parameter variable did not get its value by means of an
assignment statement, the way ordinary variables do. Instead, it had its value passed
to it at the time the procedure was called. In your program you had the statement

Ur (8)

92 APPLE PASCAL

When that statement was executed, it called procedure UP and it passed a value of 8
to parameter variable KEY. While procedure UP was running, it used KEY’s value in
the FOR statement, with the result that the initial PITCH value was 8 and the final
value was 8 + 12, or 20. Later, your program executed the statement

UF (32)

which called UP again but this time passed a value of 32 to parameter variable KEY.
That caused the initial and final PITCH values to be 32 and 44, respectively.

The concept of calling a procedure and
passing values to it is a very powerful one—

perhaps the most powerful one in program-
ming.

You should stop here for a moment, review what you have done, and reflect a bit
on how it all works and what it means. You will be using procedures and parameters
a great deal in the remainder of this book, so you'll be gathering experience as you
go. Perhaps the main thing to notice now is that procedures give you a way of
breaking a complicated programming job down into manageable chunks, each of
which performs some fairly simple task. When you adopt this strategy (which, by the
way, is a good problem-solving approach in many real-life situations; more about

that later) you will find that your main program is largely a sequence of procedure
calls.

5-5 PARAMETERS, LOCAL AND GLOBAL VARIABLES

You may have wondered about the fact that the parameter KEY was declared
twice: once in the PROCEDURE UP heading and once in the PROCEDURE DOWN
heading. Isn't it true that variables in Pascal are supposed to be declared only once?
The answer to that is “yes and no”. It is certainly true, for example, that a particular
variable name can appear only once ina particular VAR block. We will see, however,
that a procedure can have variables of its own that the main program does not know
about by name. Parameter variables are in that class, as the following experiment
will show.

Go to the EDITOR and change the main BEGIN/END block to look like this:

BEGIN
UF (18)}%
WRITELN (KEY)
END.

INVENTING NEW WORDS: PROCEDURES ~ 93

What do you think will happen when you run this version? Will 18 be written on your
? what? Run the program.
scr?(?;:)? g(;)c:tsgémop:ile—time error m’:mber 104. Go to the EDlTO.R' a?d read the
message. Then press the spacebar. The compiler givesyouthe famlllarT#nc:e:I:;argg
identifier” complaint about variable KEY in the WRITELN statgment. is EO\X/N
ithat the main program doesn’t even know about the worq KEY in UP and |nh ! is',
In the same way, the KEY in UP is distinct from KEY in DOWN and each on
her. . ,

unk?:gvgitt:a:ihoeno\;/i; the DURATION variable may or may not be different. Let.s
think about that. First, note that DURAT|ON is.declared in the.VAR.blog(O?’fvtSeSr?:ér;
program. Then, note that its name appears inside UP and again |n5|ded LjP nee
your program compiled and ran, it is safe to concludye that proce urefthe and
DOWN do know about the existence of DURATION. Y_ou d probably expec
program also to know about it, but let's rpake cer?am. -

Change the main block again so that it looks like this:

BEGIN
UF (203
WRITELN (DURATION) S
DOWN (3204
WRITELN (QURATION)
END.

Run the program, listen, and watch the screen. You should see this:

RUNNING.
100
50

Do you understand why? Procedure UP assigned a value of 100 to EURﬁ;I’CIJ%E
The first WRITELN wrote on the screen the value of DURATION after t T?hca cond
Then came the call to DOWN, which assigned 50 tq DURATION. ' b? se ond
WRITELN wrote the new value on the screen. There is only one varia Tfahna;ame
DURATION and it is known to the main program and to both proceduri]e. e ame
is also true of PITCH, of course. We say that PITCH and DURATIQ dare g o
variables, because they are known to all parts of .the program. Let's do ano
experiment to sharpen the concept of a globgl yarlable. ’

Go to the EDITOR and use DELETE to eliminate the lines

vaR . o
FITCHs DURATION ! INTEGERS

from the main program. Then use COPY BUFFER to place an exact copy of them at
the beginning of UP and also at the beginning of DOWN.

il 94 APPLE PASCAL

i In case you don't recall the steps for making these changes, here they are:

1. Put the cursor on the V in VAR.

2. Enter DELETE mode.

i 3. Press RETURN twice.

4. CTRL-C out.

5. Put the cursor on the B in BEGIN in procedure UP.

6. Type C B

7. Use ADJUST to indent both lines.

At this point the two lines should appear just before BEGIN. Finally, repeat steps
5, 6, and 7 for procedure DOWN. The program should look like this now:

PROGRAM SCALESS

USES
AFFLESTUFF #

PROCEDURE UF (KEY ! INTEGER)}$
VAR 5 ;
FITCHy DURATION ¢ INTEGERS$

BEGIN
DURATION (= 1004
FOR FITCH ¢= KEY TO KEY + 12 DO
NOTE (FITCH» DURATION)
END3§

PROCEDURE [OWN (KEY : INTEGER)}#

BEGIN
DURATION = S04
FOR FITCH != KEY DOWNTO KEY - 12 DO
NOTE (FITCHsy DURATION)
ENDJ

BEGIN
UF (20)% '
WRITELN (DURATION)$
DOWN (32) %
WRITELN (OURATION)
END.

Check it out carefully. Run it and see what happens.

Well, there you are again with the “undeclared identifier” message on the screen.
The main program didn’t know about the DURATION variable.

Make one last change. Delete both WRITELN statements and try to run again.

INVENTING NEW WORDS: PROCEDURES 95

There shouldn’t be any error messages this time, and the ?rogram should runjust
it di the VAR block was in the main program only. '
& I\;v(::tv:ige;ou conclude about the new situation, with afVéS;’L?rciégeccaliqu
insi insi ? First of
URATION inside UP and inside DOWN? , \ 0
o 2 i in program doesn’t know about it. On the
riable any longer, since the main prog . i .
° gIOD:al\r\:g UpP cert;/inly knows about a variable named DURATION, since it asl:silagbr::
OthelLe to i;t and uses it in the NOTE statement. DOWN also i.mows al:;f)_lyltoar\}latxo ole
. \;?1 the same name. Finally, there was no problem in declaring DUR
b iable in two places. (All of these facts are also true of PITCH.)DURATiON L
varm the last version of your program, you convertedkPlTCHv;?sin e Droaedore
jables. Local variables are known !
what are called /ocal varia . (Wt e B atios by
lared, but not outside. You cr
ok e e ovoc, tha tai iables inside the procedure block.
irig the VAR block that contained the variab \
%ﬁ?ﬁgh UP and DOWN each declare a variable named DURATION, UP’s
DURATION is a different variable from DOWN’s DURATION.

Any names defined within a pr.ocledure
block are known locally everywhere W|t‘h|n that
block, but they are not known outside that

block.

Parameter variables lie somewhere between local varia}:)les ?nedigls::&vnagjziedse.
i i ither its name nor its valu '
|f:a variable is local to a procedure, nei A ie o
it i d value are known outside.
rocedure. If it is global, both name an . / .
:)haera‘:nZter then its name is not known outside, but its value is passed to it from
i ’ i lled.
e at the moment the procedure is ca . ' . -
OUt\s(lgu will find that the ability to declare local variables is veR/1 uts:fvua:rlir;t\)/}/:}:’n?hce
i i iter doesn't have to worry tha
library of procedures, since the writer ‘ e
main{)rogpram might accidentally have the same name as one in a proc?:L:rr‘Z r;tain
one in the procedure is local, then it will have no effect on the one

program. They can coexist peacefully.

96 APPLE PASCAL

Here's a user trap to watch out for. In the
main program you declare X to be a variable.
The program contains a procedure. You use X
as avariable in the procedure, but by accident,
you forget to declare it within the procedure,
even though you were thinking of X there as a
local variable. When you compile the program
you get no error messages, since the compiler
thinks you mean X to be global and intended

the procedure’s X to be the same as the main
program’s X.

This gives surprising results that are extremely hard to diagnose. The way out of
the trap is to avoid using the same names for local and global variables even though
it is legal to do so. If you had used Y instead of X for one of the variables in this

example, the compiler would have reported an “undeclared identifier” because of
the missing VAR block.

5-6 PROCEDURES AND PROBLEM-SOLVING

This section is mainly philosophical. If
skip ahead.

We said earlier that breaking a complicated task into simpler subtasks, and then
working with each subtask more or less independently, was a good general
approach to problem solving, not just in computer programming, butalsoin the real
world. You actually do that all the time.

Consider the task of going to work or to school in the morning. If you were asked
to describe the task, you would probably say that you get out of bed, do bathroom
chores, getdressed, have breakfast, and drive or take a bus towork orschool. Thatis
what is called a top-level description of the main task. In fact, itis nothing more than
alist of procedure calls. What does “get out of bed” mean? Well, it means this: turn
off alarm; rub eyes; throw back covers; put on slippers; stand up; make bed. But this
listis nothing more than another description in terms of still lower level subsubtasks.
For example, “put on slippers” means this: find slipper; if left slipper, put on left foot;
if not, put on right foot; find other slipper; put on other foot.

You may think that the description of procedure put-on-slippers is already fairly
detailed. In fact, it too is merely a description in terms of calls to still lower level
procedures. At some point you will get exasperated if asked to specify all this detail
and you will say, “Oh, you know what | mean by that!” In other words, you are
claiming that some procedures are predefined or built-in and don’t require

definition. For example, you might say that find-a-slipper or put-left-slipper-on-left-
foot is a built in procedure.

Itis, and it isn't. It is if you are talking to another person who understands your
meaning. Butif you are talking to a child who is still having trouble with left and right,

you are eager to geton with doing things,

INVENTING NEW WORDS: PROCEDURES 97

i is sti i imple hand-eye coordination, these
oung child who is still working on simp nd- . :
E ve;Yl);I)rocgdures, to you, are still high-level descriptions to the child Wh%:e
low;\lgvto master them and is working on the still lower-level tasks that comp
try!
themﬁ re is a related point to be made here. It often happens that alpers?n.hasoa:
on teop-levei description of a task, but makes mistakes Iov(\;er ?:;Ngner: gitlrg:%ed
i how to do -out-of-

i ut a subtask. The child who knows . '
C?(r)rggggr;but walks out of the bedroom with an unmade bedbortw;'.(lr: rtwr;t: I:ff(ta:/hgs;;
o i t up in the morning but sti

ly knows how to get up '
B O ol roc is showing that many school children
i dures. Recent research is showing : r
R o oy i 7 iti nd subtraction are, in fact, calling
to make “dumb mistakes” in addltlop a : allin
W:obi(egzn; procedures at the lower level, while their top-level understanding is
(o]
per'fl'er::;.phnosphical point to be made here is this: the conce;f)ts of mé:;r: grrcc))gg::rr:.
i i i t of compu -
dures, and debugging, which arise ou .
T - i inking about knowledge itself and about how
i eds, are powerful ideas for thinking : . '.
m;zglgeacquire ,k)nowledge. In a sense that is probaply more than jun::n;i)noe::.\ce
IF:aarning seems to be a matter of programming, debugging, and reprogra g
rn|nV(\jl.hether you buy that conclusion or not, you will have t|o Zgrfsi,swseetctliigﬁ, wi?rtwt;i
i Ils, and we conclude
real world is chock full of procedure ca , s S koooK and
i f your favorite French haute cuis : :
example. Flip open the pages o . e e < ich that
i |l come upon some simple
look up arecipe or two. Very soon you wi e s et g of
i i . king more carefully, you see N
has only a few ingredients. Loo _ / et &t he
i i " What white sauce? They don
o oo you 9o to the | ookbook and, behold!, there are 10
rmarket. So you go to the index qf your ¢ , : :
::ZZS devoted to the preparation of various white sauces. You have just discovered

a procedure call.

5-7 GRAMMAR RULES FOR PROCEDURES
The grammatical structure of a procedure is almost the same as that of the

rogram itself. Both begin with a heading, fo||owedvby adeclaration block, :g:;ovavre]g
gy a BEGIN/END block. The precise grammatical form of the prog

procedure structures are:

prog-head prog-declaration-block BEGIN statement(s) END.

proc-head proc-declaration-block BEGIN statement(s) END;

i i i nds
Thus, the text of a procedure, like that ofa program, begins with a heading and end
with the reserved word END and a punctuation mark.
The program heading has the form

prog-head = PROGRAM name parameter-list;

98 APPLE PASCAL

while the procedure heading format is
proc-head = PROCEDURE name parameter-list;

So far, the program parameter-list has been a null list—i.e., a list whose text
contains no characters, like the null statement. You have also seen null parameter-
lists in the first version of procedure UP and DOWN, and also lists that were not null.

With only a few exceptions, the declaration block of a procedure has the same
general form as that of a program: both declaration blocks can contain a VAR block,
any number of PROCEDURE blocks, and other types of blocks you will learn about
later. Note especially that this grammar rule allows you to define a local procedure
within another procedure, and still another “local-local” procedure within that one,
and so on, as deeply as you want. (It is unusual to find actual programs with more
than two or three procedure levels, by the way.)

The BEGIN/END block of statements in a procedure is subject to exactly the
same grammar rules that apply to statements in a program. Whatever is legal inone
is legal in the other. Note, however, that a period comes after the main BEGIN/END
while a semicolon comes after a procedure BEGIN/END.

In the activities you carried out in this session, you learned that there were rules
about which variable names were known to which parts of a program. These rules
are called scoping rules, and they also apply to the names of procedures and to the

names of other things that you will learn to define in later sessions: functions,
constants, and data types.

In Pascal there is a single rule that tells the
scope of any name: the name is known only
within and everywhere within the text of the
program unit where the name was defined.

The simplest application of this rule is to names of global scope. Foranameto be
known everywhere within a program it must either be a built-in name, such as
WRITELN, or else it must be defined in the declaration section of the main program.
Avariable declared in the main program VAR block is a global variable. A procedure
defined in the main program’s declaration is a global procedure—that is, it may be
called by the main program, or by another procedure defined in the main program'’s
declaration section, or even by a procedure defined within the declaration section of
another procedure. Global names are known everywhere.

Another application of Pascal’s scoping rule tells what is meant by local scope. If
aname is defined within the declaration section of a procedure (or a function), the
name is unknown to the program unit in which that procedure (or function) was

defined. But such a name is known everywhere within the procedure (or function)
where it was defined.

INVENTING NEW WORDS: PROCEDURES 99

There is an easy way to think about Pascal’s sc.oping.rul'e. A g!ver) p(;oglrar:r:g:
(i.e.,a procedure orafunctionor the mairtw prqgI(amsuts(:er:if?éiél:enazgégg|\a/|ndu?e;;hews .
e grandparents, parents, siblings, , 1ews,
Qr;)r?:isccl)wri]lg?ennr,\zrc.% prof:)edure defined in the main program has a parent weh(ujir:elz
the main program. If the main program declaratlgn block'deflnes qther zroclz res
or functions, these are siblings. If the procedurg in questl_on conszmﬁ a eiag“?‘ra o
block that defines another procedure or function, thgt is a chlh_l.d as theg e
children, they are nieces and nephews. If a child has children, y
graCVC:tc:’t/gir:,;ﬁalogy in mind, Pascal’s sc_oping rule says that narTl\gs def.ltnsedr;nata_
particular program unit are known to it, its children, its grandchildren, |t great_
grandchildren, etc. But the names are not knowq tq pareqts, grandparerr:es\,’;lg o
grandparents, etc. Nor are the names known to siblings, nieces and nep , etc.

If you are a procedure, you and all your
direct lineal descendents are the only ones who
know the names you define.

SUMMARY

In this session you learned how to declare procedures_within aprogram andgovsi
to call them from statements in the program. Whilg learning these main facts abou
procedures you also learned a number of new things:

® You had to use the word DOWNTO in a FOR statement if the variable was to
decrease by one each time through the loop.

ili ts used in earlier sessions were
® The familiar WRITELN and NOTE statemen :
identified to be examples of a single type of Pascal statement: the procedure call.

® You used the EDITOR’s C(OPY B(UFFER commands to make duplicate copies
of program text, and also to move text from one place to another.

® You edited two sections of your main program and converted them into
procedures.

® You changed the main program into a list of procedure calls.

® You used J B and J E in the editor to move the cursor to the beginning and end of
the workspace.

B You added a parameter list to your procedure declarations, and modified the
procedure calls to pass data values to the parameter.

100 APPLE PASCAL
INVENTING NEW WORDS: PROCEDURES 101

B You discovered the difference between global variables and local variables, and

saw the relation between them and parameter variables. Table 5.1A Amplified table of the EDITOR levels of Apple Pascal. Those features

studied in this session are shown in bold face type

- . .
\Tv?tll: i:w that conflicts do not arise when a calling program declares a variable
i e.samc_e name a_s a local variable declared in the called procedure. The rom accigent
aonti’a v\iI::able is used within the called procedure, as if the other one did not ;exist oy
versa. ’ -
F' y
tablelnally, let's update the Pascal level structure table, and the Pascal vocabulary E(ditor ESC RETURN or @ &
| Q(uit editor and R

U(pdate workfile

E(xit with no update

R(eturn to editor Q

W(rite to named file RETURN

Cursor Moving Commands

Right-arrow (Move cursor right)
Left-arrow (Move cursor left)
CTRL-L (Move cursor down)
CTRL-O (Move cursor up)
RETURN (Move cursor to beginning
of next line)

Spacebar (Move cursor to next character)
J(ump to

E(nd of text

B(eginning of text

ESC

¥
i
?
.

Text Changing Commands

ESC

I(nsert text

CTRL-C (Normal exit)
D(elete text

CTRL-C (Normal exit)
C(opy text from ESC

B(uffer

ESC

Formatting Commands

A(djust indention
CTRL-C (Normal exit)

102 APPLE PASCAL

Table 5.1B Table of other command levels of Apple Pascal. No new features
appeared in this session.

Exit to escape
from accidental

entry.
R(un program in workspace
I(nitialize the system
F(iler
Q(uit the filer F
N(ew workfile RETURN
V(olumes on line
L(ist the directory RETURN
C(hange name RETURN
T(ransfer a file RETURN
D(ate setter RETURN
? Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half of CTRL-A
Pascal page
CTRL-S Stop and restart screen output CTRL-S

RESET Attempts reboot of Pascal

Table 5.2 Cumulative Pascal vocabulary. New words introduced in this session
are printed in bold face. (Code: a = declared in APPLESTUFF)

Reserved Built-In Built-In Other
Words Procedures Functions Built-Ins
PROGRAM WRITE Integer Types
USES WRITELN a PADDLE INTEGER
VAR a NOTE
PROCEDURE : Units
BEGIN APPLESTUFF
FOR
TO
DOWNTO
DO
END
DIV

INVENTING NEW WORDS: PROCEDURES 103
QUESTIONS AND PROBLEMS
' i ?
1. What three kinds of Pascal statements have you used so far in this book?

2. Suppose a program contains these two statements:

FOR I := 5 DOWNTO N DO
WRITELN (ID9¥
WRITELN (I

What will appear on the screen if the value of N is 1? 4?7 57 67

3. Answer question 2 for the situation in which therg isa semicoqlon immediately
. after DO. (How many statements would there be in that case?)

4. From the EDITOR, explain what each of the following key press sequencl:'es wiill
. do. Assume the cursor is at the beginning of line 1 and that there are 10linesin

the workspace.

a. D RETURN RETURN ESC
b. D RETURN RETURN CTRL-C
¢. D RETURN RETURN CTRL-C C B
d. D RETURN RETURN CTRL-C RETURN RETURN CB C B
e JE
f.JB
g.J ESC
5. Explain how adding a PROCEDURE block to a program can shorten it.

6. Explain how adding a PROCEDURE block can make a program easier to
understand.

104 APPLE PASCAL

The next three questions refer to the following progrant text. For ease of identifying
lines, we have put number labels on each text line.

1! PROGRAM TOF#
23 VAR
33 HENRY ¢ INTEGER}$
43 PROCEDURE MIDDLES$
52 VAR
6 GWEN ¢ INTEGER$
73 PROCEDURE EBOTTOMS
83 VAR
?: LUKE ¢ INTEGER#
10 BEGIN
113 “statement 1>
123 END}#
132 BEGIN
142 “statement 2
15 END}$
16 BEGIN
173 “statement 3
18 END.

7. Which line or group of lines of program TOP contain

11.

a. The heading?
b. The declaration block?
c. The BEGIN/END block?

(Hint: These three parts must add up to the whole program.)

. Answer question 7 for procedure MIDDLE. Do the same for procedure
BOTTOM.
- You are procedure MIDDLE. In terms of family relationships, what sort of

relatives are TOP and BOTTOM?

- In the family (TOP, MIDDLE, BOTTOM, HENRY, GWEN, LUKE), who knows

HENRY? Who knows GWEN? Who knows LUKE?

Consider these three possible statements:

HENRY $= G}
GWEN = 10#%
LUKE = 2

For each one, decide whether it would lead to the “undeclared identifier” error
message if used as statement 1? As statement 2? As statement 3? Which variable
is known globally, throughout the program?

INVENTING NEW WORDS: PROCEDURES 105

12. Consider these two possible procedure call statements:

13.

14.

15.

16.

17.

MIDDOLE
BOTTOM

Decide for each one whether it would lead to the “undeclared identifier” error
message if used as statement 3?

How does a parameter variable of the kind you used in this session receive its
name? Its type? Its value?

The diatonic scale in the key of C major, starting at middle C, consists of these
eight pitches: 20, 22, 24, 25, 27, 29, 31, and 32. Write a procedure that plays such
an ascending scale, and where the duration of each note is determined by
paddle one. (Hint: You will need eight NOTE call statements.)

“Transposing”, in music means adding the same pitch value to every note inthe
diatonic scale. Rewrite the procedure in Problem 14 so that there is a parameter
called KEY which is added to the pitch value in each NOTE call statement. If KEY
has the value zero, the C major scale should result.

Section 5-6 showed how you can describe the everyday task of going to work as
a sequence of procedure calls to subtasks, which in turn were calls to
subsubtasks, etc. Pick another common task and describe it in the same way.
Write the name of each task on one line, and indent under it each of its subtasks,
etc.

Based on your task analysis in Problem 16, give an example showing how a bug
in executing a low-level task can give unexpected results, even though the top-
level description of the task is accurate.

SESSION

SIX

MORE INVENTED WORDS: FUNCTIONS

In Session 5 you saw how to enlarge on the built-in vocabulary of the Pascal
language by inventing new words of your own and defining precisely what you mean
by them. You invented the words UP and DOWN and, you used PROCEDURE
blocks to define their meanings in terms of known words and statements, such as
NOTE and FOR. Once defined, you were able to use these words as commands, just
as though they were part of the language. The result was that your main program
became both shorter and more meaningful to a reader.

In this session you will explore a very close relative of the procedure, called a
programmer-defined function. You are familiar with the idea of a function, since you
have already used the built-in PADDLE function and have seen that it carriesouta
process that returns an integer value. In this session you will learn how to define
your own functions.

SESSION GOALS

You will experiment with the built-in RANDOM function and RANDOMIZE
procedure and discover their properties. You will use the MOD operatorand learn its
relationship to the DIV operator you used earlier with integers. You will use MOD
and RANDOM together to produce a smaller set of random integers, useful in
programming chance events, such as games. You will define a new function of your
own that returns arandom integer lying between two givenintegers. You will test the
function by using it to make sounds with random pitches in a given octave. You will
meet the famous Off-By-One Bug. You will refine your programs to use paddle
input. You will see how to place comments in the text of a program, and will review
how to write the finished version on your PROGRAM: diskette. Finally you will
explore new features of the EDITOR.

6-1 RANDOM NUMBERS

Although your main goal here is to learn how to define functions of your own
devising, this session begins with aside trip that will introduce youtoanew function
that has already been defined for you in the APPLESTUFF unit. You have already
used one such built-in (also called intrinsic) function: namely PADDLE. The new
one is called RANDOM. Let's see how it works.

107

108 APPLE PASCAL

Boot up Pascal and enter the date if necessary. Enter the EDITOR to check the
workfile. Clear it out if necessary and return to the EDITOR. Enter INSERT mode
and type the following program.

PROGRAN NOISES

Check it over for errors. Then run it. If there are compile-time errors, fix them.

The program produces two columns of integers. The first column is just the
steadily increasing value of the FOR-loop variable, COUNT. But what about the
second column? The numbers there are mostly five-digit numbers, but not always.
None of them is negative and there seems to be a ceiling at about 32,000.

Note down the first three or four numbers in the second column and run the
program again.

Again, you got similar results. In fact, the numbers you noted down were
repeated exactly the second time. Whatever process produced them before, it did
the same thing again. But the sequence of numbers produced seems to be very
chaotic.

Itis clear how the numbers got on the screen. Your WRITELN procedure call had

as the third item in its parameter list a variable named CHAOS. CHAOS gotiits value
in the assignment statement

CHAOS = RANDOM

RANDOM must be the source of all those strange numbers. As we said earlier,
RANDOM is a built-in function that comes along with the rest of APPLESTUFF. A
function, you recall, is a precisely defined process that produces a value. Whenever
a statement containing the name of the function is executed, the process happens
and the function returns the value that the process produced. (If you're hazy about
the notion of a function and how it differs from a variable, you might review Section
4-5))

So RANDOM is a function that returns positive integers. Successive calls of the
RANDOM function produce new integers, but there appears to be no predictable
pattern, except that they don’t seem ever to be much over about 32,000. Although
there is no obvious order, something fairly definite must be going on, since asecond
run of the program produced the exact same sequence of values as the first.

MORE INVENTED WORDS: FUNCTIONS 109

You might guess that somewhere in the memory of the compu.ter thereisalong
table of these numbers; but that isn't the case. In_fqgt, each one is computed by a
precise formula from the number before. The initial numb’er, called the seed,
determines the whole sequence. Although the numbers aren’t really produced by
chance, the formula used to generate themis chosen cargfully to make the numbers
seem as random as the roll of a die, or the toss of a coin. o)

Go to the EDITOR and insert, just before the FOR statement, this line, includinga

RETURN:
RANDOMIZE S

rogram. Then run it again.
Ru"‘r:\r:ee52qu%nce of numbers cr?anged each time, didn’t it? It looks as though theI
computer now may actually have produced “real” random numbers. Npt so!
RANDOMIZE is a call to a built-in procedure in APPLEST.UFF_—'. When called, it uses
some chance physical event to produce one number, wh!ch is used as the seed for
the formula discussed above. But each number after that is computed from the one
e.

bef%\e point of this discussion is to let you know that the computer doesn’tactually
have a true dice-rolling capability. Nevertheless, the RANDOMIZE prqcedure qnd
the RANDOM function are close approximations and are very useful in introducing
chance-like events into a computer program when you want that—in a game, for
example.

6-2 THINK OF A NUMBER FROM 1 TO 10

You now know how to produce random numbers between 0 and some big
number (32,767 to be precise). That's fine, we hear you saying, bgt how about
random numbers over some other interval? To simulate the roll of a die, one wants
numbers between 1 and 6 to occur with equal chance, for example. How can that be
done?))

Go to the EDITOR and change your assignment line to look like this:

CHADOS $= RANDOM MOD 64

Run the program. Run again. .
You're almost there. Variable CHAOS is receiving random values between zero

and five. All that you would have to do now is to change the assignment line to read
CHAOS $= 1 + RANDOM MOD 6%

and you would have it.
B{lt, how did the phrase “MOD 6" do the job? What does MOD mean? Why 6?

To answer that, go to the EDITOR and change the assignment line again:

110 APPLE PASCAL

Run the program.

The program now writes on each line of the screen the value of COUNT, followed
by the value of COUNT MOD 6. The values are identical when COUNT is between
zero and 5. But at COUNT =6, COUNT MOD 6 goes back to zero. In the same way, 7
MODG6is 1,8 MOD 6 is 2, etc., until we reach 12. At that pointyou see that 12MOD 6
is zero again.

If you haven't seen the rule yet, here is it: COUNT MOD 6 is the remainder of
COUNT divided by 6. For example, 13 divided by 6 is 2 with a remainder of 1: and, as
you can see on your screen, 13 MOD 6 is indeed 1.

Actually you use MOD all the time, but in another context. If itis now 10 p.m. and
you have 4 more hours of work to do, when can you go to bed? At 2 a.m., of course:
(10 + 4) MOD 12 is equal to 2. This kind of counting is called modular arithmetic
(hence the Pascal word MOD) and you do it every day.

Itis a good idea to lump X MOD Y and X DIV Y together in your mind. Both are
integer operators in the same sense that + and - are called integer operators. They
go together in acomplementary way: each one performs a division of X by Y, but one
of them (DIV) throws away the remainder, while the other (MOD) reports the
remainder and throws away the integer quotient. If you like formulas, the following
statement is always true:

X =Y times (X DIV Y) + (X MOD Y)

(If you hate formulas, forget it; it isn't especially important anyway.)
Go to the EDITOR and again change the assignment line as follows:

CHADS (= RANDOM MOD 29

Predict what you will see, and then run the program.

This sequence of zeros and ones could be used in a program to representacoin-
toss or some other two-way situation in which you wanted equal probability on both
sides.

You've probably already figured out that “MOD 1” gives zero all the time. After all,
every integer is exactly divisible by one and leaves no remainder. But what about
“MOD 0”7 Let’s find out.

Again change the assignment line to:

CHAOS != RANDOM MOD 0O}

Run again.

Compiling went fine, but you got the run-time error message, “DIVIDE BY
ZEROQ", plus some other information. Evidently a MOD of zero is illegal. So are
negative MODs. Press the spacebar to start over at COMMAND level.

MORE INVENTED WORDS: FUNCTIONS 111

6-3 BUILDING A BETTER FUNCTION

You now have the tools to build a more usable version of the built-in RANDOM
function. It is rare that a program of yours will need random numbers between zero
and 32,767. Typically, you will want a set of numbers somewhere between a lowe§t
and a highest value. Of course, the particular values of these extreme numbers will

i nt from application to application. .
i f;efafrizr?s an examg?e. Suppose you want to generate randqm musical notes in the
octave between pitch numbers 24 and 36. It would be very nice to be ablg to do that
by using a new random number function—call it RND—such that the main program

would look as follows:

BEGIN
RANDOMIZE §
FOR COUNT = O TO 200 DO
BEGIN
CHADS (= RND (24, 36)i
WRITELN (COUNTy ~ vy CHAOS) ¥
NOTE (CHAODS» 20)
END
END.

-

If RND existed, it would make your programming job easier; put more important, it
would make the intent of the program clearer to a reader of its tfzxt. RND (24, 36)
practically says, “return a random integer in the r.ange 24 to 36. .

Your job now is to build yourself such a function, and you can do it in almost
exactly the same way you did when building procedures in the last session. You
declare each function in a separate FUNCTION block. FUNCTION bloc'ks must
follow the VAR block in the program unit in which the function is def|neq. (A
program unit can be the main program, a procedure, or another‘ function.)
FUNCTION blocks can go before, after, or among PROCEDURE blocks in the same
program unit. Of course, like any named object irj Pascal, they have to bfedeclared in
the text of the program before first use by anything else. For exe}mple, if you have a
PROCEDURE block and if a statement in the procedure contains the name of the
function, then the FUNCTION block has to precede that PROCEDURE block.

6-4 THE FORM OF THE FUNCTION BLOCK
Your RND block will look like this:
FUNCTION RNI' (LOWy HIGH ¢ INTEGER) 3 INTEGERS$

BEGIN
RNIN $¢= 7?7

END#

112 APPLE PASCAL

Before going ahead with completion of the assignment statement that ends with
question marks, notice the general form of this block. It is very much like a
PROCEDURE block. It begins with a heading followed always by a semicolon, and
concludes with a BEGIN/END block. (It could also have, between the two, a
declaration section containing a local VAR block and perhaps its own local
PROCEDURE and FUNCTION blocks. This simple example, however, has no
declarations.) The heading begins with the reserved word FUNCTION, followed by
a name of your choice, followed by a parameter list, followed by a type declaration.
Except for the last item and the keyword FUNCTION, the grammatical form of the
heading is exactly like that of the PROCEDURE heading and also of the PROGRAM
heading.

Let's examine that last, distinguishing item. Why is there a type declaration both
inside the parameter list (within the parentheses) and after the parameter list
(beyond the parentheses)? The phrase “: INTEGER” inside the parentheses should
be familiar to you from your work with procedures. It tells that the parameter
variables, LOW and HIGH, are of type integer. When the main programcalls RND, it
must supply the function with data values that are integers.

But, what about the second *: INTEGER” type declaration? The answer is that it
refers to the type of the function itself. Remember, from your work in Session 3 with
the built-in PADDLE function, that every function must have a name, a value, and a
type. The final declaration says that your function RND is of type integer. That
means that it will return integer data values to the calling program. The writer of the
program that calls RND has to know that fact and has to use the word RND onlyina
place where integer constants would also be legal to use. (If not, then the compiler
would report our friend, the “type conflict error.”)

To summarize a bit, a function is very much like a procedure, both in form and in
purpose. Each one is a defined process. Each process is set in action by a call, or
reference, made when some statement containing its name is executed. The only
difference is that a procedure call is performed by a statement that consists of
nothing more than the name of the procedure. In contrast, a function call is made by
using the name of a function in any Pascal statement where a constant of the same
type could also have been used.

A function always returns an item of data of that same type. In effect, the data
item it returns “takes the place of the name of the function” wherever it appeared in
the calling program.

Now let's see how it is that you can specify the number that your RND function is
going to return. First of all, there is a grammar rule and it is very simple: somewhere
in the BEGIN/END block of the FUNCTION block, there has to appear some
statement that will assign a value to the name RND. We have written that statement
somewhat sketchily before as ’

RNLDI t= ??7

In this example, then, RND gets a value by appearing on the left side of an
assignment statement within the function definition. Thus, the function will return
as a value, whatever is computed on the right side of the assignment operator.

MORE INVENTED WORDS: FUNCTIONS 113

The only place in a Pascal program where it
is legal to have a function name appear on the
left side of an assignment statement is within
the BEGIN/END block of the definition of that
function. It would be illegal, and make no
grammatical sense, for the main program to
say this:

RNDN (3y 9) 1= 87

6-5 DEFINING FUNCTION RND

Let's get back now to the completion of your definition of. RND. We have to
replace all those question marks with some computation that will produce randon;
integers in the range between LOW and HIGH. How do you compute the numbers?
Well, you know that RANDOM gives random number; fromzeroto 32,767. Ylou know
that RANDOM MOD N gives random numbers starting at zero and extending up to
N-1. So, it looks like you should subtract LOW from HIGH to get t.he range of
numbers, right? And then add LOW to the result, so that the numbers will startnot at

W, right? Well, do it. '
zerggl:; ?I:eLSDITO% and change the program NOISE to the following text. You will
have to use CTRL-A here to see the right half of the Pascal page when you type the

FUNCTION line.

PROGRAM NOISE$
USES AFFLESTUFF3#

VAR i
CHAOS» COUNT ¢ INTEGERS$

BEGIN
RANDOMI ZE § ;, o
FOR COUNT = 0 TO 200 DO
BEGIN ;)
CHADS 3= RND (245 36)%
WRITELN (COUNTs ‘ ‘s CHADS)$
NOTE (CHADS» 20)
END
END.

114 APPLE PASCAL

Check it carefully. Run the program.

Itseems okay, doesn’tit? The notes are all in the same octave and seem randomly
distributed. In fact, there’s a subtle bug in your program. Ifyou are unusually sharp-
eyed, you may have caught it. Look at the numbers on the screen while the program
is running.

If the program has stopped, run it again. While it is running type CTRL-S from
time to time and inspect the numbers. Type CTRL-S again to start the program
going again.

The problem is that you aren’t getting all the pitch numbers out of RND that you
asked for. You are okay at the low end, where a value of 24 shows uponceinawhile.
But you asked for a top pitch of 36. Look closely—no 36.

This is an example of the most famous and most common bug incomputing: the
Off-By-One Bug. You wanted a top pitch of 36, but you gotonly as faras 35. You will
get to know this creature very well.

Let's see what happened. Quickly, without thinking at all, answer this question:
“How many numbers are there in the range 7 to 12?” The answer is 5, right? Twelve
minus 7 is 5, so the answer must be 5, okay? No, not okay. There are 6 numbersin the
range 7 to 12: 7, 8, 9, 10, 11, and 12. You always have to add one after taking the
difference between the numbers that define the two ends of the range.

Return to the EDITOR and change the assignment statement in the FUNCTION
block to read:

RND = LOW + RANDOM MOD (1 + HIGH - LOW)

Run the program. Now it is working as you asked it to, reaching a high pitch of 36.

There is only one sure defense against the
Off-By-One Bug: substitute simple numbers
into your expressions and see whether they
work out.

Inyour case, the actual numbers you used will do. With LOW =24 and HIGH = 36,
HIGH - LOW = 12. Well, RANDOM MOD 12 gives numbers in the range zero to
eleven. Adding LOW (24) to that gives numbers in the range 24 to 35, not 36. Clearly,
we needed to add one to HIGH - LOW td fix the error. This trick, substituting simple
numbers for variables and then checking the results by hand, will save you many
hours of grief.

6-6 PROGRAM REFINEMENTS

You can make a few additions to program NOISE that will let you control the
sounds by means of the paddle control knobs. Most of what follows in this section
will be review, by the way.

MORE INVENTED WORDS: FUNCTIONS 115

Go to the EDITOR and change the second parameter in your NOTE procedure
call so that it looks like this:

Run the program and use paddle one to speed up and slow down the sequence of
s.
sou\r(‘l:u can use the other paddle to control the bottom note of the octave out of
which the notes are picked at random, rather than have them always come out of the
octave between 24 and 36. Let KEY be the name of the bottom note. We want random
pitches in the range between KEY and KEY + 12
Go to the EDITOR and change the RND parameters as follows:

CHAOS

Two tasks remain. You have to declare KEY to be avariable, and you have to assigna
value to it before it is used. The goal is to have paddle zero control KEY. As you
remember, the PADDLE function will return numbers between zero and 255; butthe
range of good musical notes is only zero to 50. That means KEY must be zero or
larger, but KEY + 12 shouldn’t be greater than 50. That limits KEY to between zero
and 38. We come close to that range if we use PADDLE (0) DIV 7 as thevalue for KEY.
(What exact range does this correspond to?) .

From the EDITOR, add KEY to the VAR block, and add an assignment statement
for KEY. The revised program should look like this:

PROGRAM NOISE#
USES APPLESTUFF#

VAR ;
CHAOS»s COUNT» KEY ! INTEGER#

FUNCTION RND (LOW, HFGH : INTEGER) : INTEGER?
BEGIN) ;
RND t= LOW + RANDOM MOD (1 + HIGH - LOW)
END}

BEGIN
RANDOMIZE $
FOR COUNT ¢= O TO 200 DO
BEGIN
KEY t= PADDL R
CHAOS [l (KEYy REY & 1
WRITELN (COUNT, “ ‘y CHA
NOTE (CHAOSs PADDLE (1))
END
END.

224

08) 3

Now run program NOISE a few times, controlling it with the two paddle knobs.

116 APPLE PASCAL

6-7 ADDING COMMENTS TO YOUR PROGRAM

If you use a clear, consistent indentation style when you write Pascal programs,
and if you choose meaningful names for things, the text of your programs will
usually be self-explanatory. Once in a while, however, there may be a need to add a
word or phrase to help clarify a meaning or distinguish similar-looking words from
one another. For example, the last two lines of program NOISE contain the word
END. The first END closes the FOR statement, while the second one closes the
entire program. (In longer programs itis notuncommon to see three or four ENDs in
a row.) Adding a word or two of comment would help clarify the situation. This
section shows how to do that.

Change the NOTE statement as follows:

Run the changed program. If yousucceeded in surrounding the NOTE statement
by the symbols (* and *), then you saw that it was effectively deactivated when you
ran the program. Everything else worked as before, but there was no sound.

Go to the EDITOR again and change the last two lines of the FOR statement as
follows:

“y CHADS)$

Run again. This time the program ran, but there was no output. It appears that all of
the text enclosed by the symbols (* and *) simply vanished from the compiled
program. In fact, that is exactly what happened. The symbols are called comment
brackets. If aspace occurs between the parenthesis and the asterisk, the result is not
acomment bracket. When the Pascal compiler comes upon the opening bracket, (*,
it simply ignores all characters until it finds a closing bracket, *).

In the example above, you have used this feature of the Pascal compiler to
comment out a part of your program without actually deleting the text. This practice
is often useful while debugging a long program. You can, for example, add four or
five extra WRITELN statements to output intermediate results useful in figuring out
what is going on. Then you can selectively comment out the ones that are not useful
at the moment.

That, however, is not the main use of comment brackets. Instead, they give youa
way to add to the text of your program those helpful phrases we talked about at the
beginning of this section. The following listing shows an example of the use of
commentsto clarify the intent of program NOISE. Delete the comment brackets now
in your program. Then add the following changes:

MORE INVENTED WORDS: FUNCTIONS 117

PROGRAM NOISE#

USES AFFLESTUFF$

VAR
CHAOSy COUNTs KEY ¢! INTEGER$

FUNCTION RND (LOWy HIGH : INTEGER) $: INTEGER}
(% RANDOM INTEGER IN RANGE LOW..HIGH %)

BEGIN
RN ¢= LOW + RANDOM MOD (1 + HIGH - LOW)

END} (X RND X)

BEGIN
RANDOMIZE $
FOR COUNT t= 0 TO 200 DO
BEGIN)
KEY = FADDLE (0) DIV 7;)
CHADS $= RND (KEY» KEY + 12)}
- N !

[TEL|

END (X FO!
END.

Check these changes carefully. Run the program to check for errors. The rzsitélt
should be exactly the same as for the version you ran‘at the end of Section : ;d
There is one horrible user trap that comes along with comme.nts: and nolw is
safe time to fall into it. Go to the EDITOR and delete the asterisk in the (; ?(smﬁ
comment bracket of the first comment in the program text. Whgt do you thur:er\:\go
happen when you try to compile this program? Where does the first commen ?
Run the program and find out. Then return to th_e EDITOR. . o vou

Understanding what went on was fairly easy.ln the prgsent casg, eC:l; e:an
were conscious of the cause of the problem. But if the missing astgrlsk ha t eh o
unnoticed typing error, you would have been very hard pressgq t? figure ou bwioyus|
compiler complained that RND was an “undeclared identifier”. It wa;}:) vd. g
declared in the FUNCTION heading. The problem is t’hat the FUNCT!O ea ;)nogI &
(by accident) inside the initial comment, which doesn’t get closed until th: sb)llm o)
is reached after the FUNCTION heading. The USES block and the VA oc

also part of the comment.

Beware of unclosed and improperly closed
comments.

118 APPLE PASCAL

Restore the asterisk that you removed from the initial closin

; comm
once more to make sure all is in order. ¢ entbracket. Run

6-8 FILING YOUR PROGRAM AWAY

Savrnrogf;rarfn NOISE is now in shape for writing out on your PROGRAM: diskette and
g for uturg reference. You learned how to do that in Section 4-9, and this i
good opportunity to review the steps. ' o

At EDITOR level, type Q W. The screen prompt is this:

>QUITS
NAME OF OUTFUT FILE (<CR3> TO RETURNy --—

Remove APPLEO: from the drive and insert

our diskett :
CTRL-A. Then type the diskette name and the y ol M Type

file name as follows:

FROGRAM!NOISE
Press RETURN. Type CTRL-A again. The new screen prompt is this:

*QUIT

WRITING. .

YOUR FILE IS 4607 KYTES LONG.

DO YOU WANT TO E(XIT FROM OR K(ETURN TO

Remove PROGRAM: from the drive. Re-insert APPLEO:. Type R.

disfett:r;is:oint youfherl]ve added a new file named NOISE.TEXT to your PROGRAM:
- A copy of the same program is also in |
anc:ther copy is on APPLEQ: in the workfile. oLt ERITOR Werkspace, end
tis essential in this process to have the ri i i i
ent : ghtdiskette in the drive at the right ti
tI}‘WA\IZF:#EO. isinthe dr!ve when you press RETURN after typing PROGRAMg:NtC;IIglE.
woar .;ngécgn operatllo.n fails, put nogreatharmis done. Youjuststart over with a Q
tréublel A %RRgl\é isin ?he drive whenyoutypeR (or E)inthefinal step, youarein
o2 T‘he Coe:npmer gF%.AM. Iac.ksdthe necessary system files, such as SYSTEM.EDI-
. Ives up in despair and tries to do a cold-st it
the message APPLE |[at the to Spene. romne i
. age . p of the screen. If that happens, remo
diskette is in the drive, replace it with APPLE3:, and follow th’e regu\;:rwbh:;f—vue;

procedure. The EDITOR works i
T a1 e It pace will have been lost, but the APPLEOQ: workfile

MORE INVENTED WORDS: FUNCTIONS 119

6-9 MORE ABOUT THE EDITOR

You should now be back in the EDITOR and on your screen you should see a
copy of program NOISE exactly as it was at the end of Section 6-7. Now that you
have safely tucked away a copy of NOISE on your PROGRAM: diskette, this is a
good time to exercise a few new features of the EDITOR without worrying about
losing information. Furthermore, the text is now long enough to use commands that
would have been useless before.

We begin with tools for moving the cursoraround in the workspace, starting with
a revew of the J(UMP command. Type J E. Type J B. These commands put the
cursor at the end and beginning of the text. They give the biggest moves possible.

Now let's do a slightly smaller big move. Type P. This command moved the
cursor about one page (23 text lines) down the screen. Type P again. As before, it

“tried to move forward a full page, but this time there were not enough lines. The

cursor moved to the end of the text.

Next, let's take even smaller steps. Type J B to get back to the beginning. Then
type 5 and press RETURN. Type 10 and press RETURN. Type / and press RETURN.
These experiments show that a numeric prefix, followed by RETURN, has the same
effect as an equal number of RETURNSs. That s, 3 RETURN isequivalentto RETURN
RETURN RETURN. You also saw that/ RETURN meant to issue as many RETURNS
as possible. The effect was the same as J E.

Type 4 CTRL-O. Type 20 CTRL-0. Type 10 CTRL-L. These experiments show
that the numeric-prefix idea also works with CTRL-O and CTRL-L. Type 22 and
press the right-arrow key. Type 22 and press the left-arrow key. Type 22 and press
the spacebar. Type / and press the left arrow. As you probably guessed, the number
or slash prefix works in the same general fashion with all of the cursor-move
commands in the EDITOR.

Now for another new wrinkle. Press the RETURN key about ten times. Notice the
greater-than sign (>) just before the word EDIT in the prompt line. Type the key that
has the comma and the less-than sign (<) on it. Notice that a less-than sign now
appears before EDIT. Now press the RETURN key a few times. The symbol in front
of the word EDIT establishes what is called the set direction. The effect of the
RETURN key at EDIT level is determined by the set direction. The normal direction
is forward, indicated by a greater-than sign (>), and causes a RETURN to move the
cursor forward to the start of the next line. The reverse direction, indicated by a less-
than sign (<), causes a RETURN to move the cursor backward to the start of the
preceding line.

Now let's see what else is affected by the setdirection. With the reverse direction
set, type the right-arrow key a few times. Type the left-arrow key. Type CTRL-L.
Type CTRL-0. These keys move the cursor in fixed directions, irrespective of the set
direction. Press the spacebar a few times. The effect is a backspace because the set
direction is backwards.

Type J B. Type J E. Type P. Type the key that has the period and greater-than
sign (>) on it. Notice that a greater-than sign again appears in front of the EDIT
prompt. Type another P. This experiment shows that the P(AGE command moves
the cursor one page in the set direction, but that the J(UMP command is not affected
by the set direction.

To summarize a bit, you have found that the RETURN, spacebar, and P keys
move the cursor in the set direction. The other cursor-move keys are unaffected by

120 APPLE PASCAL

the set direction. The direction may be set forward by the period, greater-than, and
plus keys; it may be set backward by the comma, less-than, and minus keys.
There is another nice way to move the cursor to a location defined not by the
number of steps to get there but by the text that is to be found there. For example, if
you wanted to find the first occurrence of the NOTE call, here is all you would have
to do. Type J B. With the direction set to forward, type F. You see this prompt line:

FINDC1DS LCOIT <TARGET: =l
Type the following response:

/NOTE/

As you saw, the cursor was moved just beyond the first occurrence of the word
NOTE as soon as you typed the second slash. If your response had been

+NOTE .

the result would have been identical. The slash or period is called a delimiter. You
can choose any delimiter thatis not a letter oranumber. The word you type between
delimiters must be a complete word in the text of your program and not just a
fragment, such as OTE, if the search is to be successful. F(IND is affected by the set
direction. A numeric prefix to F tells which occurrence to search for. A slash prefix
to F means to find the /ast occurrence.

So much for moving the cursor about while at EDIT level. Next, let’s see how to
make it easier to enter long lines and to read them. So far, you have been using
CTRL-A to toggle the viewing window back and forth to each half of the Pascal
page. The problem with that is that you lose the context of the line you are trying to
read or type. The Apple Pascal EDITOR gives you another option, called horizontal
scrolling. Move the cursor to the beginning of the FUNCTION RND heading. Type
CTRL-Z. Press the right-arrow key repeatedly and notice what happens as the
cursor approaches the right side of the screen. Keep pressing the right-arrow key
until the cursor moves to the next line.

This mode is especially nice when you are typing long lines into the computer,
since the window moves right along with the new letters you type. Type CTRL-A to
leave the horizontal-scroll mode. When you do so you will sometimes end up
looking at the right half-page and sometimes at the left. Another CTRL-A will get to
the other half, as usual.

The last EDITOR command to be introduced in this session is the X(CHANGE,
which is nothing more than a shortcut for combining a D(ELETE with an I(NSERT.
Suppose you wanted to change the first FOR statement so that it counted from zero
to 832 instead of zero to 200. Here is the shortcut. Move the cursor to the 2 in 200.
Type X. Type 832. Type CTRL-C. That's all there is to it. Note that this approach
works only when the number of characters is the same before and after the
exchange. Also, you cannot make an exchange beyond the end of a text line. ESC
get's you out of the X(CHANGE mode without changing the workspace.

MORE INVENTED WORDS: FUNCTIONS 121

SUMMARY

The mostimportantthings you learned in this ses;ion were the grammar rules for
declaring functions and for calling them into execution. You saw how to declare the
type of the function in the heading of the FUNCTION block,.and how to use an
assignment statement within the FUNCTION block to specify the value to be
returned by the function. You learned that a FUNCTION block goes after the VAR
plock in the program and comes before, among, or afterany PROCEDURE block§ or
other FUNCTION blocks. You also were told thatg propedure or another function
could have a locally defined FUNCTION block W|th|q it. .

In addition to these fundamental facts about functions, you also experienced a
few other things.

s You used the RANDOM function (defined in APPLESTUFF) and found that it
produced a chaotic-looking stream of numbers between zero and 32,767.

® You used the RANDOMIZE procedure (defined in APPLESTUFF) to generate a
random seed for the sequence of humbers produced by RANDOM.

8 You found that the integer expression X MOD N gave a value equ_al to the
remainder of X divided by N; and that X DIV N gave the integer quotient.

® You used RANDOM MOD N to generate chaotic-looking integers in the range
zero to N-1.

® You met OBOB, the famous Off-By-One Bug and found a strategy for fixing it.
® You refined a random tone program to use paddle input for more user control.

® You used comment brackets (* and *) both to comment-out program segments
and to add explanatory text.

B You used the Q W exit option from the EDITOR and saved the workspace copy of
your program in a named file on the PROGRAM: diskette.

® You used the P(AGE command to move the cursor a page at a time.

® You saw that a number or a slash preceding a cursor move command in the
EDITOR caused a repetition of the command.

® ' You saw how to change the setdirection, and found that th_e RE.TURN, spacebar,
P, and F commands each moved the cursor in the set direction.

® You used the F(IND command to move the cursor to a selected word in the text.

" ®m You used CTRL-Z to set horizontal scroll mode.

® You used the X(CHANGE command as an delete/insert shortcut.

122 APPLE PASCAL MORE INVENTED WORDS: FUNCTIONS 123

Tables 6.1A and 6.1B show the expanded command level structure of the Apple
Pascal system. Since there will be no major additions to these tables in the
remainder of the book, only the cumulative Pascal vocabulary tables will be given in
future sessions. The complete command level structure is given in Appendix D.

Table 6.1B Amplified table of other command levels of Apple Pascal. Those
features studied in this session are shown in bold face type.

Exit to escape
from accidental

entry.
Table 6.1A Amplified table of the EDITOR levels of Apple Pascal. Those features y
studied in this session are shown in bold face type. F(iler
: Q(uit the filer F
B Niew okl
entr V(olumes on line
Y L(ist the directory RETURN
RETURN
E(ditor ESC RETURN or Q E C(hange name RETURN
Q(uit editor and R T(ransfer a file
U(pdate workfile Diate setter AETUAN
E(fit with no update ? Show additional commands RETURN
R(eturn to editor Q 4 .
W(rite to named file RETURN R(un program in workspace
Cursor Moving Commands | I(nitialize the system
Right-arrow (Move cursor right) Commands Available at Any Level
é‘?;ﬁrlr_oz,‘(ﬂ%g‘fuf:;fzmg)) CTRL-A Toggle to other half of CTRL-A
CTRL-O (Move cursor up) CTRL-S g?cvsszln%a?:start screen CTRL-S
RETURN (Move cursor to beginning of next line) output
?pacebtar (Move cursor to next character) . » CTRL-Z Set horizontal scroll CTRL-A
(Er(:% 8f text RESET Attempts reboot of Pascal
B(eginning of text
P(age move
F(ind text pattern ESC
Text Changing Commands
I(nsert text ESC
CTRL-C (Normal exit)
D(elete text ESC
CTRL-C (Normal exit)
C(opy text from s ESC
B(uffer
X(change characters ESC
CTRL-C (Normal exit)
Formatting Commands
A(djust indentation
CTRL-C (Normal exit)

124 APPLE PASCAL

Table 6.2 Cumulative Pascal Vocabulary. New words introduced in this session
are printed in bold face. (Code: a = defined in APPLESTUFF)

Reserved Built-In Built-In Other
Words Procedures Functions Built-Ins

PROGRAM WRITE Integer Types
USES WRITELN a PADDLE INTEGER
VAR a NOTE a RANDOM
PROCEDURE a RANDOMIZE Units
FUNCTION APPLESTUFF

BEGIN
FOR

TO
DOWNTO
DO

END

DIV
MOD

MORE INVENTED WORDS: FUNCTIONS 125

QUESTIONS AND PROBLEMS

1. What are the results of these integer expressions?

a.13DIV 5
b. 13 MOD 5
c.5DIV 13
d. 5 MOD 13
e. 5 MOD 5
f.5MOD 1
9.5MOD 0

h. 5 MOD -5

. Given a number N, how can you usé MOD to tell whether itis exactly divisible by

17? How can you use DIV for the same purpose?

. Suppose the 37th day of the year is a Monday. How can you compute whether

the 237th day will be a Monday? If it isn't a Monday, how can you tell what day it
is?

. How can you tell whether a given number is even or odd?

. One common way for a computer to produce random-looking sequences of

numbers is the following:

a. Pick a 2-digit seed and a 2-digit factor.
b. Set the next-number equal to the seed.
c. Multiply the next-number by the factor.

d. Remove the units digit and thousands-digit (if there is one).

_e. Let the next-number equal the two inner digits. (This is the beginning of the

random sequence of numbers.)
f. Repeat steps ¢ through f.

Experiment with this procedure. Start with a factor of 37 and aseed of 1. Find the
first dozen or so numbers produced. (A pocket calculator will help.)

R

126 APPLE PASCAL

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Change the seed in Question 5 and repeat. Are there “bad seeds"?
. Change the factor in Question 6 and repeat. Are there “bad factors”?

- If function HENRY is declared within procedure GEORGE, does the main

program know about the existance of HENRY?

- In Question 8, is avariable declared by HENRY known to GEORGE? Is a variable

declared by GEORGE known to HENRY? Is HENRY known to GEORGE?
Why does the type of a function have to be declared?
What kind of statement is used to give a function its value?

Write the complete FUNCTION block for a function that returns the square of an
integer. (N*N equals the square of N.)

Change the assignment statement of the function in Question 12 to make it
return the fifth power of N.

Referring to the FUNCTION RND as defined at the end of Section 6-5, decide in
each case below whether the call to RND is legal or not. If not, explain why.

a. X := RND (2, 2)

b. Z := RND (2, 1)

c. Q:= RND (-10, 10)

"

d. R := RND (0, 32768)
e. M := RND (0, 98.6)
Which cursor move commands in the EDITOR are affected by the set direction?

List all of the keys that can change the set direction when used at the EDIT level.

Explain what a numeric prefix and a slash do when used with cursor moving
commands.

Suppose the workspace is 35 lines long, and each line has at least 20 characters.
Where will the cursor be after each of the following sets of key presses:

a.JB
b.JB.9RETURN

c.JE, 9 RETURN

MORE INVENTED WORDS: FUNCTIONS 127

d.J B/ CTRL-L
e. J B + 6 spacebar
f.JB>P<P
19. What key presses would you use to find:
a. the first occurrence of the word BEGIN in the workspace.
b. the second occurrence of the word BEGIN.

c. the last occurrence of the word BEGIN.

SESSION

SEVEN

DRAWING PICTURES

The functions and procedures that you learned to define in the last two sessioms
are the basic building blocks out of which all but the simplest Pascal programs are
composed. The existence of these types of program units is your invitation to break
any larger programming problem into smaller “chunks” which can be attacked one
at a time. The functions and procedures that you define will determine the overall
“shape” that your program takes.

With this topic behind you, you have already reached an important plateau in
your understanding of the organization of Pascal programs into program units. You
have also learned nearly all of the Apple Pascal system commands that will be
needed in this book. (For that reason, we now stop reproducing the table of system
commands at the end of each session.) At this point, you have learned your way
around the EDITOR and the FILER, and you can write a fairly long, multipart
program.

There is more to learn, but it will all proceed on the solid base established so far.
There are more statement types; one new one appears in this session and two moire
in the next. There are additional data types beyond the integers you have been
using. And there are new elementary capabilities, such as graphic output. Thatisthe
main topic of this session.

SESSION GOALS

In this session your main task will be to learn how to generate line drawings on
the screen. You will learn about a new data type called boolean. You will be
introduced to the REPEAT statement, which is used to control looping in a way
different from the FOR statement. You will learn the difference between constants
and variables. You will write a graphic procedure.

7-1 PADDLE SKETCH

Carry out the standard startup steps: boot up Pascal, set the date, inspect the
workfile, clear it out if necessary, and, finally, enter INSERT mode in the EDITOR.

129

130 APPLE PASCAL

These items, which are probably old hat to you by now, make your computer
ready for you to type in a new Pascal program and then move it into the now empty
workfile. You should see the INSERT prompt at the top of the screen, the cursor at
the left of the line below it, and an otherwise blank screen.

Type in the following program.

Check each line carefully as you enter i, using the left-arrow key to delete errors.
Leave INSERT via CTRL-C. Check the semicolons especially carefully. If you find
errors, use DELETE/INSERT to repair them.

There are a few new things and several old things in this program. Starting at the
top, the name of the program is SKETCH. It has a USES block, which yousaw inthe
last two sessions, but this time there are two words following USES: TURTLEGRA-
PHICS as well as APPLESTUFF. The first and second statements in the main
BEGIN/END block, INITTURTLE and PENCOLOR (WHITE), are both new. The
third statement is the familiar FOR statement.

Within the FOR statement there is a compound statement, bracketed by BEGIN
and END. It contains four simple statements. The firstis an assignment. The second
is the simplest form of the FOR statement, since the word DO is followed by anull
statement and a semicolon. The third statement is another assignment. The fourth
statement, MOVETO (X, Y), is a new procedure call. Note that three semicolons
separate the four statements making up this compound statement. No semicolon is
needed after the fourth one because the word END brackets it. Note similarly that
two semicolons separate the three statements that make up the main BEGIN/END
block of the program. The third statement (the outer FOR statement) is not followed
by a semicolon, since it is bracketed by the final END.

First of all, you should recognize that there are no new statement varieties here.
INITTURTLE, PENCOLOR, and MOVETO are examples of the familiar procedure
call statement. Other examples are WRITELN and NOTE. You will be seeing a new
statement variety in this session, so keep your eyes peeled.

;;;;;

DRAWING PICTURES 131

Yourimmediate goal is to understand these new elements in your program and to
see how they work together. From the EDITOR, type Q U R to run the program. (If
there are compile-time errors, go back to the EDITOR, fix them, and run again.)

Turn the knobs on your paddles back and forth, first using one paddle at a time
and then using them together. If time runs out, type R and run again. What position
does paddle zero control? What about paddle one? Recall that the PADDLE function
returns the number zero when the knob is all the way to the left (counterclockwise)
and 255 when all the way to the right. What position on the screen corresponds to
zero for paddle zero? Zero for paddle one? 255 for paddle one? Try todraw asquare
as large as possible; is its top visible on your screen?

Return to the EDITOR after you've finished these experiments.

You've probably guessed that all the action is going on in the compound
statement of the outer FOR loop. Let’s examine these statements. The firstone is a
familiar assignment statement, like the one you used in Session 4. It inputs the
current setting of paddle zero, returns a number between zero and 255, and assigns
that value to the variable named X. The next statement is a make-work loop, which
you also used in Session 4 to allow the required amount of time between paddle
inputs. The third statement assigns to variable Y the value corresponding to the
setting of paddle one. The last statement, MOVETO (X, Y), is the only new one here;
and it is the one that causes graphic output to your screen, just as WRITE and
WRITELN cause text output and NOTE causes sound output.

Perhaps the easiest way to understand how the MOVETO procedure works is by
imagining that you are giving commands to a little creature who can crawl about
your screen and who posesses a set of pens. For historical reasons, we'll call this
little fellow a turtle, though you've already seen that this particular turtle can crawl
pretty fast.

The effect of MOVETO (X, Y) is to move the turtle to a point that is a distance of X
from the left edge of the screen and a distance Y from the bottom edge. The turtle
moves to the new point along a straight line path from wherever it was when
MOVETO was called. While moving, the turtle draws a line with whichever pen color
it currently holds.

The turtle is left in its new position until told to do something different. Because
the paddle inputs and the MOVETO statement occur inside a FOR loop which goes
from one to 2000, the turtle is getting a sequence of 2000 commands to move to
positions with X and Y values determined by your paddle settings. If you don't
change either paddle control, the turtle moves to where it already is, so you don't see
any action. If you change only paddle zero, only the X value (the distance from the
left edge of the screen) changes. The turtle moves on a horizontal line. If you change
only paddle one, then only the Y value (the distance from the bottom edge) changes.
The turtle moves up and down. If you change both paddles at once, you change both
X and Y and the turtle moves diagonally.

132 APPLE PASCAL

MOVETO is very powerful. With it, a
program can draw any figure that can be
represented by a sequence of straight line
segments.

7-2 DRAWING IN COLORS

Le.t’s investigate the notion of pencolors referred to in the above section, where
we said that as the turtle moves it “draws a line with whichever pen coloritcurrently
holds.” You have probably guessed where in the program SKETCH the turtle is told
what pen color to use: it's the PENCOLOR (WHITE) statement just before the outer
FOR loop. Let’s change it to another color.

From the EDITOR, use DELETE and INSERT to change WHITE to ORANGE.
Back at the EDIT level, type Q U R and run the program. Go back to the EDITOR
change ORANGE to BLUE or GREEN, or VIOLET, and run again. ’

If you have a color TV display, then you saw that the turtle can draw lines in
several colors.

7-3 A NEW PASCAL STATEMENT: THE REPEAT LOOP

You probably have begun to feel that these experiments would be a lot easier to
do if the program loop wasn't always set to exactly 2000 steps. Sometimes it ran out
Sth?éel }"(29 were ready to quit, and sometimes you had to wait for it to run out. What

ike is some way to have the ste i i] i
Y ouro ready 1o y ps repeat again and again until you signal that

WeII: fglks, you're in luck: the Pascal language has the words REPEAT and
UNTIL in its vocabulary, and they mean just what you'd expect. To use them in
program SKETCH you're going to make two changes. The text beginning with “FOR
| := z?nd ending on the next line with “BEGIN” will be deleted and replaced by the
word “REPEAT”. The word “END” on the line after MOVETO (X, Y) will be deleted
and replaced by the text “UNTIL BUTTON (0)". (That'sazero between parentheses
not an O.) Use INSERT, DELETE, and ADJUST to change the main BEGIN/ENd
block of your program to look like this:

BEGIN
INITTURTLE$
FENCOLOR (WHITE)$
REPEAT
X $= PADDLE (0)#
FOR WAIT = 1 TO 3 DO
Y = PADDLE (1)7
MOVETO (X» Y)
UNTIL BUTTON (0)
END.

DRAWING PICTURES 133

(If you want to be very tidy, you can also delete “1,” from the VAR block, since | is not
used anywhere in the new version.)

From the EDITOR, type Q U R and run the new version.

Don’t be alarmed when the program runs on and on. How do you stop it? Try
pressing the little button on paddie zero. What happened? Type R to run again, and
again press button zero. Return to the EDITOR and inspect the program.

You have changed your main program from a FOR loop to a REPEAT loop. The
FOR loop always results in a predetermined number of repetitions, but the REPEAT
loop continues again and again until some stated condition comes true.

Here's an important item of nomenclature: we refer to all six lines of text in your
REPEAT loop as forming a single REPEAT statement. Remember that in Pascal the
division of text into lines is fairly arbitrary. As far as the definition of the language is
concerned, a single statement can appear on one line or on many lines. A statement
can start in the middle of one text line and continue until the middle of the next. We
will not commit such stylistic blunders in this book, and you shouldn’teither; but the
point here is that you will have a much clearer idea of the way Pascal statements are
defined if you stop thinking about lines of text and start thinking of larger structures.

Note, for example, that the single REPEAT statement in program SKETCH
contains four statements within it. This concept will come as a surprise to people
familiar with languages like Basic or Fortran, where each statement is athing unto
itself. In Pascal, the majority of statements contain other statements. You have now
seen two examples: the REPEAT and FOR statements.

Now let's see what the formal definition of the REPEAT statement is. Every
grammatically correct REPEAT statement must fit the following format rule:

REPEAT statement(s) UNTIL condition

That is, it begins with the reserved word REPEAT, followed by one or more
statements, followed by the reserved word UNTIL, followed by an expression that
can be either true or false. If there are several statements in the body of a REPEAT
statement, they must be separated by semicolons, as usual in Pascal. It is also legal
to have no text (except a space of course) between REPEAT and UNTIL; our friend
the null statement takes care of the legalities in that case. Note here that BEGIN and
END are not required around the body of the REPEAT loop, since REPEAT and
UNTIL serve the same purpose of bracketing the set of statements in the body.

The following example shows that you can use a REPEAT loop to get the same
effect as the FOR loop that you have been using.

Iot= 14
REPEAT

(X BODY OF LOOF %)

It=1+1
UNTIL I > 2000

134 APPLE PASCAL

In this case the condition, “I > 2000” is false while | is less than 2000 or equal to 2000,
but becomes true when | reaches 2001. But, by means of the statement before
UNTIL, each time through the loop, one is added to the old value of | and the result is
assigned back to I. Hence, the body of the loop will be done 2000 times.

Now let's look again at the REPEAT loop in your program SKETCH. The only
element that still needs explanation is the phrase BUTTON (0) after UNTIL.
According to the grammar rules of the REPEAT statement, the thing that follows
UNTIL has a true or false value. In fact, BUTTON satisfies that requirement.

You've probably guessed that BUTTON, like PADDLE is a function that gets
input and returns a value. PADDLE gets input from the rotating knob and returns as
a value some integer between 0 and 255. BUTTON gets input from the little button
switch on the paddle housing, and it returns a value that is either true (ifthe button is
being pressed) or false (if not pressed).

Since true and false are not integers, you're probably wondering about the type
of function BUTTON. It is certainly not of type integer isit? In fact, itis a Pascal data
type called boolean (after George Boole, the great logician). Other languages often
call this type logical. Don’t worry about the name: the important thing to remember
about functions and variables of type boolean is that they can only take on values
equal to true or false. The BUTTON function is of type boolean and so is the
expression “l > 2000”, which you saw earlier in this section. Both can take on only
these two values.

So far in your study of Pascal you have found only one kind of statement that
uses boolean expressions: the REPEAT statement. In the next session you will meet
the IF statement, the Pascal statement that most often uses boolean expressions.
Since you will get much more experience there, we'll drop the subject now and
return to graphics.

7-4 INVISIBLE LINES AND BACKGROUND COLORS

You may have realized that we are missing an essential graphic tool for drawing
pictures. We've seen how to make the turtle draw lines in white, orange, blue, green,
and violet. But, how do you move the turtle to a new starting location without
drawing a line? If that capability were lacking, you'd be pretty limited in the kind of
drawings you could make. Well, try this experiment.

Edit your program so that the PENCOLOR line looks like this:

FENCOLOR (NONE)#

Run the changed program. Press button zero when you get bored.

You may feel that seeing nothing happen is pretty unexciting. (If so, you
probably weren't too turned on by the null statement either.) But getting nothing to
happen is sometimes of critical importance. By using the color value NONE in the
PENCOLOR statement you have succeeded in moving the turtle all over the screen
without leaving a trace. By alternating between NONE and WHITE, say, you could
draw any set of disconnected lines. We won't pursue that right now, because it
would change the program quite a bit to do so.

DRAWING PICTURES 135

Instead, let's see what we can do about the background color. So far it's always
peen black. Edit your program so that the main body looks like this:

BEGIN
INITTURTLES

REPEAT
X = FADDLE (0)#
FOR WAIT = 1 TO 3 DO}
t= PADDLE (1)4%
MOVETO (X» Y)
UNTIL BUTTON (0)
END.

There are only two changes. First, you have used a new color, BLACK, for the turtle’s
pen. Second, you have introduced a new graphic command, FILLSCREEN, with the
color WHITE.

Run the new version, exercise the two paddles, and finally quit by pressing
button zero. Return to the EDITOR. Change BLACK and WHITE to ORANGE and
BLUE, or VIOLET and GREEN, and run again.

Procedure FILLSCREEN obviously does just what its name suggests: it fills the
screen between certain boundaries, using whatever color was passed as a
parameter to the procedure.

7-5 RANDOM SKETCHING

The combination of random numbers with graphics is often quite wopde.rful to
see. In this section you will change two lines of your program and get a significant
change of output.) . .

Enter the EDITOR and change the REPEAT loop so that it looks like this:

REPEAT .

3= RANUOM MOD 2803
Y = RANDOM MOD 1929
MOVETO (X» Y)

UNTIL BUTTON (0)

~ You recall from the last session that the expression “RANDOM MOD N” gives an

approximately random integer lying in the range zero to N-1. Thus th.ese changes
will result in X getting a random value between zero and 279 and Y getting arandom
value between zero and 191. Why these particular ranges?

136 APPLE PASCAL

The numbers 0, 279, 0, and 191 define the
extreme left, right, bottom, and top of the
visible points on your Apple Il screen.

In effect, therefore, this program now picks random visible points and draws
lines from one to the next. Run the new version and watch. Press button zero as
usual to quit.

7-6 LOOPS INSIDE OF LOOPS

After running your program for a while, the screen gets pretty well covered with
lines. It would be nice to erase and start over without stopping the program. Here’s
one way to do that:

Return to the EDITOR and change the body of your program to look like this:

BEGIN
INITTURTLE

5

REPEAT
X = RANDOM MOD 2803
Y = RANDOM MOD 192%
MOVETO (Xy» Y)
‘UNTIL BUTTON (0)
UNTIL BUTTON (1)
END.

Except for new indentation, the important thing that you have done hereistoinserta
new REPEAT after PENCOLOR, and a new UNTIL BUTTON (1) before END. In
effect, you have now nested one REPEAT loop (the old one) inside another REPEAT
loop (the new one). The body of the inner loop will be repeated until BUTTON (0)
has the value true, as in the past. The body of the outer loop will be repeated until
BUTTON (1) is true. But the inner loop is part of the body of the outer loop, so the
situation is a little subtle.

Think it over a while. Then run this new version. What happens when you press
button zero alone? What happens when you press button one alone? What happens
when you press both together? Why? Return to the EDITOR and study the program.

It's a good strategy in understanding any program to go at it line by line, starting
at the top. In this case, the first statement is acall to INITTURTLE. (Don'tworry now
about what it does.) Next, PENCOLOR sets the pen to WHITE. Next we enter the
outer REPEAT loop. Next FILLSCREEN (BLACK) does what its name implies: turns
every point on the screen black. Continuing to read down the program text, we enter
the inner REPEAT loop. Within that loop, X and Y get random values and the turtle
moves to the corresponding point, drawing a line.

DRAWING PICTURES 137

The next line of textis UNTIL BUTTON (0), which closes the innerloop. If button
zero is not being pressed, then the BUTTON (0) function is false, and the inner loop
is repeated, adding a new line to the screen. (Note that while the program is in this
innerloop, itis not even examining the state of button one, so it won’t matter whether
or not you press it at this time.)

If button zero is pressed, then BUTTON (0) becomes true and the inner loop
stops looping. We go to the next line of the program and find UNTIL BUTTON (1),
which closes the outer loop. If at this particular instant, button one is not being
pressed, then the entire outer loop gets repeated. The first statement in the outer
loop is FILLSCREEN (BLACK); so the screen is restored to black, erasing all the

- lines that were drawn on it previously. The next statement in the outer loop is the

inner REPEAT statement. So, almost immediately, the program is back in the inner
loop, drawing random lines and waiting for button zero to be pressed.

Now you can see why both buttons have to be pressed at the same time to stop
the program: button zero has to be pressed to get out of the inner loop. At that
instant, button one is examined. If it is being pressed then, the outer loop stops
looping and the program ends.

Run the program again and make sure that it behaves the way we said. Then
return to the EDITOR.

7-7 A LESSON IN USER-ENGINEERING

From the point of view of the user of this program, who may have no idea how it
was written, it would have made much better sense if each button had its own unique
function, instead of requiring the user to press both buttons at the same time to end
the program. A small change will do that.

Go to the EDITORandinsert“ORBUTTON (1)” after “‘UNTILBUTTON (0)”. The
two UNTILs should now look like this

UNTIL BUTTON (0) OR EUTTON (1)
UNTIL BUTTON (1)

This change requires a little explanation, since it introduces the new word OR.
However, its meaning is the same as the common meaning of the English word “or”.
In the present case the entire expression

BUTTON (0) OR BUTTON (1)

is true if either BUTTON (0) or BUTTON (1) istrue orif both are true. The expression
is false only if BUTTON (0) and BUTTON (1) are both false.
In the present situation, that means that the inner loop will quit if either button

- zero or button one is held down. But the outer loop will quitonly if button one is held

down. From the point of view of the user, therefore, button zero means “erase and
start over”, while button one means “stop the program”. The two buttons seem to
function independently.

138 APPLE PASCAL

This kind of careful attention to the way the
user sees a program—the so-called “user
interface”—is the single most important thing
for programmers to learn. It makes the differ-
ence between programs that are friendly,
forgiving, conversational, and humane and
others that are hostile, rigid, obscure, and
machine-like.

Run the changed program and confirm the fact that button zero and button one
now appear to function independently.

7-8 COUNTING PASCAL STATEMENTS

The present short program gives a good opportunity to deal with a source of
confusion about the text of a Pascal program. How many statements do you think
there are in the main BEGIN/END block of program SKETCH? Count them now and
find out.

That sounds easy, but it really isn’t. What does counting mean in the case of a
statement such as FILLSCREEN (BLACK) thatis part of another statement? In some
sense it is fair to say that the program contains only three statements: INITTURTLE,
PENCOLOR (WHITE), and the outer REPEAT statement. Yet it obviously also
contains assignment statements, other procedure calls, and another REPEAT
statement. One could count as many as eight different statements.

The way out of this confusion is to talk about levels of detail. At the outermost
level of detail there are only the three statements described above. But one of them,
the REPEAT statement, contains two statements within it. Furthermore, the second
one of those is another REPEAT statement containing three simple statements
within it. In the following listing of the main BEGIN/END block we show a way of
talking about the “statement number” of each statement in the program.

Lirne Statement Frodram

A BEGIN

B 1 INITTURTLE$

C 2 FENCOLOR (WHITE)$

g 3 REPEAT

E 3.1 FILLSCREEN (BLACK)S$

F 3.2 REPEAT

G 3.2.1 X t= RANUOM MOD 2803
H J.2.2 Y ¢= RANDOM MOD 192%
I J3.2.3 MOVETO (X» Y)

J UNTIL BUTTON (0)

K UNTIL BUTTON (1)

L END,

DRAWING PICTURES 139

At the coarsest level of detail, program SKETCH has three statements, the third
of which extends from lines D through K. Looking at it more finely, we see that
statement 3 contains two statements, 3.1 and 3.2. Looking at 3.2 more carefully, we
find that it contains three statements; 3.2.1,3.2.2, and 3.2.3. Using thisapproach you
can see, indeed, that SKETCH contains only three statements, but it also contains
eight statements.

You should notice that we have always used indentation of the text of our
programs to call attention to the way that Pascal statements are nested within one
another. As you become more familiar with statement nesting, you will also discover
that you understand when semicolons are required and when they are not needed.
For example, line H needs a semicolon to separate statement 3.2.2 from 3.2.3. But
line | does not need a semicolon since there is no statement 3.2.4. Likewise, line J,
which ends statement 3.2, needs no semicolon because there is no statement 3.3;
and line K, which ends statement 3, needs no semicolon because there is no
statement 4. If you now inserted a statement after line K, it would become statement
4, and you would have to go back to the UNTIL in line K and add a semicolon.

7-9 CONSTANTS

The following statements have appeared in the last several versions of your
program:

= RANLOM MOD 2803%
= RANDOM MOD 192

You know what the numbers 280 and 192 mean, because you have just been working
with them: 280 is the width of the screen and 192 is the height. But how would these
statements look to someone else who was reading your program and who might not
be aware that the Apple graphic screen had these dimensions? Or, how would they
look to you a few months from now when you may have forgotten the significance of
these particular numbers? And, even if you remember them, will you also recognize
140 and 96 as being the middle of the screen? What about 210 and 144? What do they
represent? The recognition problem gets much harder in longer programs, which
might easily be sprinkled with a mixture of numbers, each with its own meaning in
the proper context, but hard to recognize by its literal appearence as a numberin a
program statement.

There is another important consideration that bears on this issue. Suppose that
your program is scattered with literal numbers like 280, 140, 70, 210, etc., all of which
derive from the actual width of the screen. Now, suppose you want your existing
program to run on a different Pascal computer system which has a screen that can

- plot 320 or 512 points horizontally. To change your program you would have to read

it carefully, locate all of the subtle ways that 280 and its relatives had been included
in the text, and then laboriously edit each one to conform to the correct numbers for
the new screen width.

140 APPLE PASCAL

What to do? Well, for a start, you could certainly clarify the intent of your program
by writing the statements like this:

¢= RANDOM MOD WIDTHS
= RANDOM MOD HEIGHT

Substituting the words, WIDTH and HEIGHT, for 280 and 192 makes your meaning
vastly clearer than itwas. In alonger program that had to make use of the point at the
middle of the screen, WIDTH DIV 2 and HEIGHT DIV 2 are much more obvious than
the mere numbers, 140 and 96.

Part of the solution to the problem is clear: it is always better to use meaningful
names for things than to use literal numbers. But how can one do that in Pascal?
Well, you already know one way to do that. You could declare WIDTH and HEIGHT
in the VAR block as new variables of type integer. That would get the names into
existence, all right, but it would not give any values to those names. You would have
to take care of that toward the beginning of your BEGIN/END block, probably by
means of assignment statements such as these:

WIDTH = 2803%
HEIGHT = 192

prior to the first use of those names elsewhere in the text of the program.
Furthermore, you would have to take care that no later statements assigned new
values to these variables.

That course of action would be the recommended one indeed, if Pascal did not
offer an even better solution. What you really need is something which has two
properties: a meaningful name and an unchangeable value, once it is specified.
Such objects are called constants in Pascal, and are different in concept from
variables, which may change in value throughout the program.

Let's include the constants WIDTH and HEIGHT in your present program. Go to
the EDITOR and change your program so thatithas the CONST block and changed
assignment statements shown below:

DRAWING PICTURES 141

PROGRAM SKETCH$

USES
TURTLEGRAFPHICSy APPLESTUFF $

c

VAR
Xy Y 1 INTEGER?#

BEGIN
INITTURTLE®
PENCOLOR (WHITE)$
REPEAT
FILLSCREEN (BLACK)S$
REPEAT

UNTIL BUTTON (0) OR RUTTON (1)
UNTIL BUTTON (1)
END.

Note carefully the grammar and punctuation rules for the CONST block. After the
reserved word CONST there appears a sequence of phrases of the general form

name = literal-constant semicolon

The name is up to you, subject to the usual rules that apply to any Pascal
names—i.e., it must start with a letter and be followed by zero or more letters or
numeric digits or both. After the name there comes an equal-sign, not a colon-
equal-sign. This is not an assignment operation, but rather a definition of the very
meaning of the word. After the equal-sign there must be a literal constant. In the
case of integer numbers, for example, a literal constant is just the set of characters
that you ordinarily use to write the number down on paper. It is not grammatically
correct to write

WIDTH = 140 + 140%

since “140 + 140” is not a literal constant. Note also, that the type of a constant is
never declared explicitly. That isn’t necessary, after all, since the type is evident by

~ looking at the literal constant: 280 is obviously an integer. Last of all, note that each

constant definition always concludes with a semicolon.
So much for the CONST block in the declaration section of your program. What
about the use of such defined constants? Well, for openers, the name of a constant,

142 APPLE PASCAL

once defined, can by used in most places just like the name of a variable. Your
program, for example uses WIDTH in the expression

RANDOM MOD WIDTH

and there is no way to tell, just by inspecting that expression, whether WIDTH is a
constant or a variable (or a function, for that matter). The usage rule for named
constants is actually a little different than for variables. The name of a constant can
be used anywhere in a program, including the declaration section itself, where the
literal constant it stands for would also be allowed. You will see examples of this in
Session 11.

Check the program text carefully, and then run it. There should be no change in
its behavior.

To drive home the point about the unchangeability of Pascal constants, let's
make one more change. Go to the EDITOR and insert the following line just before
the X assignment statement:

4

Run the changed version, and note the error message. Then delete the above line.
The reason you got the error message is exactly the reason you would get one if
you had included the statement

That just doesn’t make sense and Pascal says so, whether you use a literal constant
or a named constant in a nonsensical way. The truth of the matter is that naming a
constant is just specifying another way to “spell” the literal constant. In your
program, the five characters “W-I-D-T-H" here have exactly the same meaning as
the three characters “2-8-0". Once given in the CONST block, there was no way to
take that meaning back, orto changeitin the remainder of the program. Thatis what
a constant is.

The addition of the CONST block brings to five the number of distinct types of
blocks that can appear in the declaration section of a Pascal program. They are the
USES, CONST, VAR, PROCEDURE, and FUNCTION blocks. All except the USES
block may also appear in the declaration section of procedure and function
definitions. The first three blocks are similar in that there can be no more than one of
each in a program, and the blocks have to appear in that order: USES, then CONST,
then VAR. PROCEDURE and FUNCTION blocks, if any, must occur after the other
blocks; there may be several of each and they may be intermixed with one another.
Later you will learn about a few additional blocks allowed in the declaration section,
but the ones you have used thus far are the main ones that you are likely to see in
most Pascal programs.

DRAWING PICTURES 143

The scoping rules for names, which you learned in Session 5, apply also to
named constants. If declared in the main program they are known globally.
Constants declared in a procedure or function are local toitand toall its directlineal

descendents.

7-10 VIEWPORTS

So far, you have been drawing pictures on the whole screen of your TV display.
There will be times when you want to limit the picture to a smaller part of the screen.
Return to the EDITOR and add the following line immediately after INITTURTLE:

Run the changed program.

This experiment shows you how to define limits for your picture. The numbers
(of type integer) in your call to the VIEWPORT procedure define the left, right,
bottom, and top of a rectangle on the screen. No graphic output will occur outside
that rectangle, called the “viewport”, until it is changed. Line segments that cross a
viewport boundary are “clipped” so that only the interior part is drawn.
FILLSCREEN fills the viewport only. The full dimensions of the screen are achieved
by VIEWPORT (0, 279, 0, 191), which is exactly what you getif the program contains
no VIEWPORT statement. A program can contain more than one VIEWPORT
statement; each one (potentially) redefines the viewport; and there is only a single
viewport in effect at one time.

7-11 TURTLEGRAPHICS AND INITTURTLE

You've undoubtedly been wondering about these words and their meanings.
They have been in each of the programs you have written in this session. Inorder to
discover their meanings, let's delete them, one at a time, and see what happens.

Return to the EDITOR. Delete TURTLEGRAPHICS and the comma after it. Run
the program.

You got compile-time error 104. Type E and read the error message at the top of
the screen. Since the cursor is now just to the right of INITTURTLE, that s the word
that is being complained about as being an “undeclared identifier”.

Remember that in Pascal, all names (identifiers) have to be defined (declared)
prior to their first use. Without the word TURTLEGRAPHICS inthe USES block, you
get the error message; with it, you don't. You saw a similar situation with
APPLESTUFF in Session 4. TURTLEGRAPHICS is a special package of graphic
routines, stored on APPLEOQ: in file SYSTEM.LIBRARY. It is there that the names
INITTURTLE, FILLSCREEN, VIEWPORT, PENCOLOR, and MOVETO are defined,
along with the colors BLACK, WHITE, BLUE, ORANGE, GREEN, VIOLET and
NONE. If you leave TURTLEGRAPHICS out of the USES block, then all these names
are undefined.

Press the spacebar. Reinsert TURTLEGRAPHICS and the comma. Delete
INITTURTLE. Run the program.

144 APPLE PASCAL

. You do not get an error this time, but you don’t get a picture eith
RUNNING...” message suggests thatallisin order. Is yOL?r progfam running??rb;rer;i
button one and see whether it stops as it should. ‘

The INITTURTLE statement is necessary before any other graphic statements
are executed. It takes care of initializing several things so that future graphic activit
will take place properly. Most notably, it sets your TV display into graphic modey
When any Pascal program first starts running, the TV display is in text mode Wheﬁ
V_/BITE or WRITELN statements are executed, they output characters which are
visible on the screen when in textmode. This is because WRITE and WRITELN send

their output to what we have been callin
it g the Pascal page, the ichi
normally visible on your screen. e ethalretunients

In fact, there are really two Pascal pages:
thle text page and the graphic page. The Apple
window looks out at only one or the other, but
poth exist at the same time. A program can be
invisibly outputting text to the text page while

the graphic page is visible on the screen, and
vice versa.

R Tlhe main thing that INITTURTFE does is to erase the graphic page and to set the
Pppe window so that it is looking at the graphic page. (In addition, it sets

_ENCOLOR to NONE, puts the turtle in the center of the graphic page andvsets the
viewport to be the _fuII screen.) If INITTURTLE is left out, the progr’am may run
correctly, but you will not see any graphic output because you are still looking at the

text page.

The TURTLEGRAPHICS unit contains two additional procedures that enable

you simply to switch the Apple window back and forth be i
: tween the graphic page
and the text page. Neither one changes what is on the pages. The s?atepmenf °

TEXTMODE

is a procedure call tha i i i
ot t sets the Apple window to the text page. Likewise, the

GRAFMODE

is a proced_ure call that sets the window to the graphic page. No parameters are
passed to glther procgdure. We will not explore TEXTMODE or GRAFMODE now
but they will be useful in cases where you need to use both text and graphic outputj

Return to the EDITOR and restore INITTUR ;
program. URTLE and a semicolon to your

DRAWING PICTURES 145

7-12 MAKING YOUR OWN GRAPHIC PROCEDURES

The TURTLEGRAPHICS unit defines all the graphic procedures that you have
used in this session. The ones you have seen, plus one or two more, are the basic
tools you have available for all your graphic tasks. As you have used them you must
have gotten the impression that they are quite primitive tools. In fact, people in the
computer world would refer to this set of procedures as the graphic primitives,
meaning that everything else has to be built out of these procedures. Search asyou
may, you won't find in TURTLEGRAPHICS any procedures for drawing squares, or
circles, or graphs, or pie charts. It is up to you to create those procedures yourself.

Your work in Session 5 and 6 showed you a general method for defining and
naming your own procedures and functions. In this section you will use that method
to create a procedure to draw a rectangle of any size on the screen at any location.
Such a procedure might be used, for example as a building block in another graphic
program or to box in some text in a program that mixes text with graphics on the
graphic page.

Before defining the details of this procedure, let’s first agree on aname foritand
on the data to be passed to it that will specify the precise rectangle to be drawn. we'll
call the procedure BOX, as areminder thatitwilldrawa rectangular box. The data to
be passed to BOX when it is called will have to tell (a) how big the box is and (b)
where it is to be drawn. There are many ways to do that. Forexample, we could pass
to BOX the width, height, and location of the lower-left corner (twomore numbers).
Or else we could pass the location of the lower left and the upper-right corners. Or,
we could pass the width, height, and location of the center. Once we decide on the
meaning of the data to be passed, we must next decide on the orderin which the four
items of data are to appear in the parentheses after BOX in the call statement.

In one sense, it doesn't matter how you decide these questions. Any one of the
above specifications will work and is sensible. Despite that fact, this is not the time to
toss a coin or make a thoughtless decision. Whenever you define a procedure or a
function, you are making an extension to the language. It is always a good idea to
think about the language and to look around for existing linguistic models for what
you want to do. If you find one, then make your extension “sound like” or “have the
flavor of” words and patterns already present. If you do that, the result will have a
natural quality that makes it easy to learn, easy to use, and easy to remember.

It so happens that TURTLEGRAPHICS does indeed have a nice model for your
BOX procedure. It is the VIEWPORT procedure, which also specifies a rectangular
area on the screen, as you have seen. The four items of data for VIEWPORT are the
locations at the left, right, bottom, and top of that rectangle, as measured from the
left edge or the bottom edge of the screen in each case. Obviously, you will find it
easier to learn, use, and remember the BOX procedure if it uses these same pieces of
data in the same order.

Now we turn to the task of declaring procedure BOX and specifying the detailed
drawing instructions the turtle will need to draw the box. A reasonable set of
instructions would be these:

1. Move to the lower-left corner, without drawing a line.

2. Draw a horizontal line to the lower-right corner.

146 APPLE PASCAL

3. Draw a vertical line to the upper right.
4. Draw a horizontal line to the upper left.

5. Draw a vertical line to the lower left.

Here is a direct, line-for-line translation of those instructions from English into
TURTLEGRAPHICS primitives:

FROCEDURE ROX (l.y Ry By T ¢ INTEGER);

BEGIN
FENCOLOR (NONED$ MOVETO (s B)$
FENCOLOR (WHITED)$ MOVETO (Ry B)$
MOVETO (Ry T)#
MOVETO (Ly T3
MOVETO Ly E)§

ENDF (% ROX %)

Note that once the pen color is set to white, it stays that way; therefore, the last three
lines of the BEGIN/END block don’t need a PENCOLOR call.

This procedure, like ones you wrote in Session 5, has aparameter list with several
variables (L, R, B, and T) dec/ared as integers. The names are chosen to remind a
reader that the order of the parameters must be /eft, right, bottom, and top. In the
main body of BOX, these parameter variables are used in the five calls to MOVETO.
Look at the first one:

MOVETO Ly RYj

It says, in effect, “Move to the left-hand, bottom point of the rectangle.” That is the
lower-left corner. The other moves can be understood in the same way.

Go to the EDITOR and insert the PROCEDURE BOX declaration into your
program text. Remember to put it after the VAR block.

Now let’s use our new word by calling BOX in the main program. Itwould be easy
enough to modify the main BEGIN/END block to make your program draw random
rectangles on the screen. All that is necessary is to select two random horizontal
positions (one for the left edge and the other for the right) and two random vertical
positions (for bottom and top). Then, call BOX with these four values.

Below is the complete program. The name has been changed. The VIEWPORT
call has been deleted. Variables have been added or changed. The main
BEGIN/END block has been changed. Edit your program to look like this:

DRAWING PICTURES 147

USES _ —
TURTLEGRAFHICSy AFFLESTUFFS
CONST
WIDTH = 280%
HEIGHT = 1924

BEGIN
INITTURTLE#
FENCOLOR (WHITE)#
REPEAT
FILLSCREEN (BLACK)#

R BUTTON (1)

UNTIL BUTTON (1)
END,

Check the changes carefully. Then run the new program. As before, button zero

erases the screen and button one stops the pro.gram.. .
After running the program a few times, you might like to keep a copy of ;_t':(t;;d:r
its own name, on your PROGRAM: diskette. You can do that from the ED y

using the Q W option. See Section 4-9 for details.

SUMMARY

During this session, you learned the following new things about Pascal:

® You found that TURTLEGRAPHICS must be declared in the USES block if
graphic commands are in a program.

® You learned that INITTURTLE must be used in a program before graphic
commands to initialize the graphics package.

148 APPLE PASCAL

® You saw that PENCOLOR is used to set the color of drawings on the screen.

You. 1'xsed the MOVETO (X, Y) to cause the turtle to draw a line from its present
position to the new screen position X and Y.

You used the REPEAT/UNTIL statement to loo

until the condition f i
UNTIL was true. P on following

You metanew type of data called boolean which can take on only the two values:
true or false.

You saw that OR can connect two boolean expressions with the same meaning
as the English “or”.

You Iearngd that the turtle can be moved from one position on the screen to
another without drawing a line by employing PENCOLOR (NONE).

You found out the difference between a variable and a constant.

You learned to declare constants in a CONST block, ahead of the VAR block.

You used the VIEWPORT command to restrict

graphic output to a specified part
of the graphic page. ° ° e

You wrote a graphic procedure.

The last part of the summary is to update the Pascal vocabulary table.

DRAWING PICTURES 149

Table 7.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in boldface. (Code: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS)

Reserved
Words

PROGRAM
USES
CONST
VAR

PROCEDURE

FUNCTION
BEGIN
FOR

nuuuaeaua o R

Built-In
Procedures

WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVETO
PENCOLOR
TEXTMODE
VIEWPORT

QUESTIONS AND PROBLEMS

Built-In
Functions

Boolean
a BUTTON

Integer
a PADDLE
a RANDOM

Other
Built-Ins

Constants
g NONE

g WHITE

g BLACK
g GREEN
g VIOLET
g ORANGE
g BLUE

Types
BOOLEAN
INTEGER

Units
APPLESTUFF
TURTLEGRAPHICS

1. What is meant by a boolean variable? How is it differentfrom an integer variable?

2. What will happen if you attempt to use screen graphics withoutthe INITTURTLE
command in your program?

3. Suppose you use the line

REPEAT UNTIL RUTTON (0)#

in a program. What would its effect be?

4. How is the Apple window switched from the graphic page to the text page? How
is it switched back to the graphic page?

150 APPLE PASCAL

5. Can you write on the text screen while looking at the graphic screen?
6. How do you set the background color of the graphic screen?

7. Write a program to generate and dis
play onthe screenrandomi
0 and 100. Use button zero to stop the program. Hegembies

8. Explain why procedure BOX (Section 7 i
| -12) works even if R < L
cases, what is the order of the lines drawn by BOX? <LerT<Binthese

9. T:u: problem is to generate rectangles of varying size on the screen. Write a
Ser gram to draw black rectangles onawhite screen. Each time you press button
0, a new rectangle whose size and location is chosen randomly isto be drawn

on t' € screen Make sure t“at a“ SUCII IeClalIg|eS “t on t' 1€ screen. USe bullOll

10. Write a program to draw a tic-tac-t i i
‘ ! -tac-toe diagram (black lines on a white screen) i
viewport that occupies the upper right quarter of the screen. nine

11. |l\./Iodify program SKETCH (the version in Section 7-9) to draw random black

sl(r::as onc? white screen in a viewport occupying the lower left quarter of the

° een. ho.ose all the random points inside the viewport so that there is no
clipping of lines. Use button zero to stop the program.

12. \é\/ritte atprogram todraw horizgntal whitelines onablack screen. The lines are to
e started at some random point on the screen and extend to therightarandom

part of the remaining length to the ri
it butte el g ght edge of the screen. Stop the program

13. Write a program to cover a white screen with black grid lines (both horizontal

and vertical) space i .
screen.) spaced 20 screen units apart starting at the lower left corner of the

SESSION

EIGHT

BRANCHING STATEMENTS: IF AND CASE

You have already met two of Pascal’s five control statements. In Session 4 you
learned to use a FOR statement to control the repeated execution of a simple or
compound statement some predetermined number of times. In Session 7 youuseda
REPEAT statement for a similar purpose, except that the repetition continued until
some logical condition became true. The FOR and REPEAT statements provide loop
control over other statements that make up the body of the loop. In Session 9 you
will meet the WHILE statement, Pascal’s third and final kind of loop control
statement.

In this session you will learn about two new statements, IF and CASE, that allow
branching control over other statements. By using IF and CASE statements you will
be able to write a program that does different things under conditions established by
the branching logic of the program. Without these two new statements, all of your
programs would have no choice but to march through all statements in succession,
possibly looping back over some or all of them. Very few practical computer
programs could be written without using branching control statements.

SESSION GOALS

Your main goal is to understand how to use IF and CASE statements to control
execution of various alternative sets of statements in a program. Along the way you
will use variables of a new type called CHAR, and will gain further experience with
variables and expressions of type BOOLEAN. You will use the built-in READ and
READLN procedures to get user input into a running program. You will write a
BOOLEAN function. You will learn to use three new graphic procedures.

151

el o e iw e

152 APPLE PASCAL

8-1 A SIMPLE TWO-WAY BRANCH

Boot up Pascal. Set the date. Clear out i
. . the workfile. G
level and enter the following program: oo the EDITOR/INSERT

PROGRAM QUESTIONY

ER i CHAR)

IE (‘IS EVERYBODY HAFFY? *)
READLN (ANSWER)$ -
CWURITELN (“THE ANSWER IS ; ANSWER)

?;Zh;(t: tTut of INSERT mode. Check for typing errors and fix any you find.
itial program has two new features: a variable of type CHAR, and a call to

|Ocedu e ”EAD I\l H e be t Way to 'ea“ thei eanings is b e pel entatio
Ru" "Ie p|°g|a|". YOU st Ould see T

RUNNING. ..
IS EVERYRODY HAFFY®?

grég&s/céﬁeon;btlr;ecrll e;/(eryt:ing halts. What is happening? Look at the first line in the
- You have seen the WRITE statement many times bef
gr?gpceq the quegtlon “IS EVERYBODY HAPPY?” on the scrgen. The facotrfﬁa:':
R%Agfdsstgigrazzl{wagow probably has something to do with the next line—the
: - The name of the procedure implies its functi RE i
opposite of WRITE. If WRITE and WRITELN ou i i e cermon o
‘ tput information on the screen, the
?E:aggtdliigf\DLnggotled input information from somewhere. Any ideas wHereg
y candidate at this point has to be the keyboard. T i i :
READ parameter is of type CHAR, a n iohyou e
, @ new data type which you haven't

Let’s try a keystroke on the ke i i oaram e

‘ yboard to see if that will i
again. Press the Y key and then the RETURN key. ek
scr:\éha;happened? You should have seen “THE ANSWER IS Y” written on the
o tnh t the top of the sqrgen you should see the COMMAND line which indicates
informa?ioﬁr(f)rgorrint]h haks fgmshed running. Our hunch that READLN asks for

e keyboard seems to be correct since the ini

program finished as

;si?‘:)er; aes yc')‘ut.presse_d Y and then the RETURN key. Run the program a few mo
e a’caalfto :::E;tépl)_lsg aresponse and pressing RETURN. These experiments sho'\'/‘va

_ causes a program halt until the user types somethin i

. ,end
w;trr;re:] l?tETIQRN. Then an attempt is made to assign to the variable in the gREADICI?l
p eter list a value equal to what was typed by the user. In the present case the

BRANCHING STATEMENTS: IF AND CASE 153

variable, ANSWER, was of type CHAR, which is the Pascal abbreviation for
character. So the initial character of the string of characters that the user types is
assigned as the value of ANSWER. Finally, the third statement in your program
writes the value of ANSWER on the screen. Note that WRITELN accepts parameters
of type CHAR as well as INTEGER.

Now that you know how to get user input from the keyboard into a running
program, let's see how to use that input to control the operation of the program.
Replace the WRITELN line with the five new lines shown below.

BEGIN
WRITE (/18 EVERYRODY HAFFY? ‘)34
READLN (ANSWER) §

Note that there is only a single semicolon in the five new lines you added. That
means you have added only two Pascal statements. The interesting one begins with
the reserved word IF, is four lines long, and contains two other unfamiliar reserved
words, THEN and ELSE. Familiar callsto the WRITE procedure follow these two new
reserved words. Thus you can see just from the general grammar rules of Pascal that
the IF statement contains other statements within it.

We'll come back to this point in a moment. Now run the program. Type aY in
answer to the question on the screen. Press RETURN. What happened? Why did it
happen?

Well, does the message “GOOD NEWS” make sense in light of the fact that the
character “Y” was typed in? Look at the line following READLN (ANSWER). Thereis
a condition stated there, and it is “IF ANSWER ="Y’ " The letter you typed in at the
keyboard was assigned to the variable ANSWER so ANSWER is equal to Y. But the
statement says that if ANSWER does equal Y THEN what? The next line is the
statement WRITE (‘\GOOD’), which is the source of part of the message you saw on
the screen.

So far, so good. If the condition is true, evidence points to the fact that the
statement following THEN will be executed. What do you suppose will happen ifyou
type in a character other than Y? Let’s find out.

Press R again to run the program. This time, enter N and press the RETURN key.
This time you got “BAD NEWS” displayed on the screen and you probably saw this
coming. If the condition following IF is true, the statement following THEN is
executed. If the condition following IF is false, the statement following ELSE will be
executed. The IF/THEN/ELSE structure works exactly the way you would expect it
to when you read it.

Note that either the statement following THEN was executed or else the
statement following ELSE was executed, depending upon the condition following
|F. But in either situation the statement following the entire IF statement

WRITELN (/NEWS’)

154 APPLE PASCAL

was executed. The IF statement in your program contains two branches, only one of
which was taken when you ran it. After that branch was completed, the statement
after the entire IF statement was executed. That is how the complete message
“GOOD NEWS” or “BAD NEWS” was constructed on your screen.

Let’s vary the program. Return to the EDITOR and change the BEGIN/END block
to the following:

BEGIN
WRITE (‘IS EVERYEODY HAFEY? *))
READLN (ANSWER)
IF ANSWER = ‘Y’ THEN
WRITELN (“HOORAY’)
END.

Note that this time the IF statement contains a THEN branch but lacks an ELSE
branch. What will happen when you run it? Run and see. Type a Y and press
RETURN. Run again, this time typing something other than Y. Press RETURN.
This experiment shows that the IF statement does not need to have an ELSE
branch. If the condition “ANSWER ='Y’ " is true,the THEN branchis taken. Butif the
condition is false, the abbreviated form of the IF statement has no effect at all.

8-2 BOOLEAN VARIABLES AND FUNCTIONS

A very small change in your program will introduce a useful new topic. Go to the
EDITOR and change your program so that it looks like this:

PROGRAM QUESTIONS$

VAR
ANSWER : CHAR#
YES ! BOOLEAN)

BEGIN
WRITE (‘I8 EVERYERODY HAFFY? ‘)%
READLN (ANSWER) $
YES 1= ANSWER = ‘'Y’3
1F YES THEN @
WRITELN ¢(“HOORAY’)
END. ’

You have added a new variable whose name is YES and whose typeisBOOLEAN. In
the BEGIN/END block, YES is assigned the value ANSWER ="Y’. What value is that?
Run the program and find out.

Did it surprise you that this version of QUESTION behaved exactly as before?
What you have found out here is that “ANSWER = "y* isalegalexpression, thatithas
avalue of some kind, and that you can assign it to the variable YES. Since you didn’t
get a “type conflict” error, that must mean that the expression also is of type

BRANCHING STATEMENTS: IF AND CASE 155

BOOLEAN. As you recall from your experience wit\l?Etge; BUTTOel: Iﬁgs'gﬁg ttrrLeerie;
: : true and false. Thus isassign .
are only two BOOLEAN values: wlse. priie
’ he name of your program p
SWER =Y’ and the value false otherwise. c
f;r':le big difference between the := symbol and theb: Tymg:;.dThh:ré t;ycrg?no;ae;lgvtaxcs)
1 i . The = symbol is
eans to assign a value to a varlablel .

:/r;Iues. It is the result of that comparison that gets assugned'to YfEtﬁ. IF statomait
From there on everything should be fairly clear. The behav_noro e oy

depends only upon the value of YES. If true, the THEN branch is takenan

the screen. If false, nothing happens.. B '
appfr?;se?(gmple you have seen here is slightly artificial, buttj/ou shogl}(?‘;teflggr:;;ﬁ
ili i to a named variable mean
that the ability to assign a BOOLEAN valug . ' 2 you oo
i thout knowing what their
t cedures that operate on these variables wi .

:r:; eYF;rL?can also pass BOOLEAN values as parametergtoEif'\LlJncg!ogt:rﬁgsvzflc:rfs.
' d BOOLEAN objects, ,
haps the most common occurrence of name . :

ggOﬁEAN-va!ued functions, such as BUTTON. The following ghange in your

program shows how you might define your own BOOLEAN function.

PROGRAM QUESTIONG
FUNCTION YES ! BOOLEAN}

BEGIN . e
WRITE (/18 EVERYRODY HAFFY? ‘)4
IF YES THEN

WRITELN (’/HOORAY’)

END.

“The main change here has been to convert YES from a variable ipto a ;L;Intc;l?hné
When YES is referred to in the main BEGI'N/END|I?’-I{oE(;\k[’)tt;\le;r?(jt:gcl:i\?eckeyboard
nction. The first thing the function does is to ca . . .
I:pﬁtl Note that the variable ANSWER is now localrt]o ;unct!g: Zggbzl:eze/:a%wg;

: know about it. Next the functi
e e et -if not, YES returns the value FALSE.
Yolf al, then YES returns the value TRUE; if not, YESr
:\(l)o:ia tlh(:thRUE and FALSE are the “standard spellings” of the two élgluoeLsErst
BOOLEAN data can have. Thus, TRUE and FALSE are corzsta;ntf ?;;)éﬁ?\lTEGER ,
i anto .
j 'Y’ is a constant of type CHAR, and 24 is a cons _
JUStGaos to tlhe EDITOR and make the above changes to your program. Run it a few

156 APPLE PASCAL

times. The fact that it works the same as before shows that your BOOLEAN function
is doing exactly what we said above.

This example of BOOLEAN functions is fairly typical of their use in other
situations. Notice that the function does more than justreturnatrue or false value. It
also performs the input from the keyboard. A more complete version of function YES
would also verify that ANSWER was equal to either’Y’ or 'N’ and, if not, prompt the
user to type one or the other. Then it would repeat the verification. Thus, when the
main program calls YES it is both enacting aninput procedure and also determining
which of two possible situations occurred. Thatis a characteristic use of BOOLEAN
functions.

8-3 READ AND READLN

Run the program for each of the keyboard inputs listed below. In each case,
watch what happens in response to your input.

YES
YOOHOO
NO
NURILE
sracebar
WHOOFEE !

Now let's review what happened. You saw that Y, YES, and YOOHOO caused
HOORAY to be written out. Only the first character of the input is assigned to the
variable ANSWER. Anything beginning with Y results in Y being assigned to
ANSWER, which in turn causes HOORAY to be printed out. Anything other than
input beginning with a Y will cause nothing to be displayed.

Go back to the EDITOR and delete the LN in the READLN statement. Leave the
EDITOR and run the program. After the message IS EVERYBODY HAPPY?, press
the Y key but not the RETURN. What happened? The point of interest here is
whether or not the RETURN key is required after a character is typed in.

Run the program again, but this time type the letters R F D in quick succession,
but again don’t press the RETURN key.

Well how did you wind up in the date-setting facility? It's simple. If you were
watching the screen you saw that as soon as you pressed R, the program decided
that ANSWER was not equal to Y, and’it ended. The computer went back to the
COMMAND mode and looked for further instructions. Recall that the computer
stores up commands when more than one letter is pressed insuccession. Of course
the next letter you typed in was F, which called the FILER. Then the D moved you
into the date-setting facility. This another of the user traps that you can stumble into
occasionally.

Press RETURN and Q to get back to the COMMAND level.

Changing READLN to READ had two effects. First, the program started running
again as soon as you typed a single character. Second, since you did not type a

BRANCHING STATEMENTS: IF AND CASE 157

RETURN, the text on your screen at the end of the run looked like this

1S EVERYBODY HAFFY? YHOORAY

i ion. If you want “HOORAY" to appear on
n you typed aY in response to the question . _ _
‘tl:nr;enei,(t Iiné,pyou will have to make the program |?self outputa RETU.RN immediately
after the input. Change the READ line in function YES as follows:

REALD (ANSWER)$ WR

Run again and type a Y. Thistime “HOORAY" should have appeared on the next line.

8-4 THE SEMICOLON BUG

Change the main BEGIN/END block as follows:

BEGIN -
WRITE (/18 EVERYEODY HAFFY? “)3
IF YES THENj:

WRITELN (‘HOORAY)

END.,

Run it. Type Y. Run again. Type N. Why did the insertion of the semicolon aftgr
THEN.cause “HOORAY" to be written on the screen no matter what you typed in
onse to the question? . .
resghe explanation here is quite simple. Adding the s‘:emncolpn i:grf;ZFxQI?rdEtrNe
i i tand of removing
ffects of signaling the end of the IF statemen . fin .
iall from thgbody of the IF. Since it is now outside the IF statement, it is carried out

dless of what the user typed in answer to the question.

i i w? The complete statement looks like

What, then, is the IF statement doing no
this

IF YES THEN?

158 APPLE PASCAL

This may not seem to agree with the form of the abbreviated IF statement:

IF condition THEN statement

since there doesn’'t seem to be a statement after THEN. But there is, of course, and it
is our friend the null statement, which you met in Session 4. The upshot of this
experiment is that the accidental insertion of a semicolon after THEN does not
always lead to a compile time error, but it does change the logic of the program.

Watch carefully for extra semicolons within
your IF statements.

In the present example, the null statement is executed if YES is true and not
executed otherwise. (There is no practical difference, of course, since the null
statement doesn’t do anything.) But in either case, program execution continues
with the final WRITELN (HOORAY’) call, now no longer a part of the IF statement.

It will help you to avoid dropping needless semicolons into IF statements if you
recognize that the reserved words THEN and ELSE, like BEGIN, END, REPEAT, and
UNTIL, act just like punctuation marks themselves. Extra punctuation is never

needed immediately before or immediately after THEN or ELSE. If you find a
semicolon so situated, remove it.

8-5 NESTED IF STATEMENTS

You have seen how an IF statement creates a two-way branch in aprogram, each
branch of which is a Pascal statement. So far the branch statements have always
been WRITE or WRITELN procedure calls, but they might have been any Pascal
statement, simple or compound. One particularly interesting branch statement
would be another IF statement. The following version of program QUESTION shows
such an example of one IF statement nested within another.

BRANCHING STATEMENTS: IF AND CASE 159

PROGRAM QUESTIONS#

FUNCTION YES ¢ BOOLEANS

VAR
ANSWER ¢ CHAR?
BEGIN
READ (ANSWER)$ WRITELNS
IF ANSWER = ‘Y’ THEN
YES = TRUE
ELSE
YES {= FALSE
END# (X YES X)

BEGIN

END.

Notice that the outer IF statement contains a THEN bran.cr.x andanELSE brancl"\z.
The THEN branch is a simple IF statement, also contqlnlng THEN and EL'Sh
branches. Likewise, the outer ELSE branch is another simple IF statement wit
THEN and ELSE branches. The net resultis a four;jw;x ll;lr:;nch that depends upon

i OLEAN values of WEEKDAY an .
then::ab:::c;l?oove changes in your program. RunI it several times, typing in all four

ions of Y/N responses to the two questions. _
conrfb;g:tlr:);le any doubtz about how each pair of inputs generate§ its own outtptttx\t,
you should study the main IF statement and run the program again. Npte thah |:
indentation scheme used in the program text helps to clarify the n_estmg of.t eT
statements. Each ELSE is indented the same amount as the IE that it goes wntrtm). o)
get the meaning of any particular ELSE, all thatyou haveto do_ls look dlrgctly above
it to the IF that has the same indentation. For example, the first ELSE in the malg
BEGIN/END block goes with IF RAINY; so it means IF NOT RAINY. The secon
ELSE goes with IF WEEKDAY and means IF NOj' WEEKDAY. . i

Another thing to notice here is the lack of semicolons in the ten lines con arlu g
the main IF statement. None is needed or permitted because the THEN branch an

160 APPLE PASCAL

the EL_SE branch each consist of asingle simple statement; namely, an IF statement.
Likewise, the branches of each of the inner IF statements are simple WRITELN

statements. Since there are only simple statements, no semicolon separators are
needed.

8-6 THE ABBREVIATED-IF BUG

You saw at the end of Section 8-1 that it is legal to have an IF statement with only
a THEN branch. While such abbreviated IF statements are very useful and are
common in practical programs, they are also a frequent source of a nasty bug that
can be hard to decipher. We'll lead you into this trap slowly so that you can see how it
happens.

Go to the EDITOR and comment out the outer ELSE branch of the IF statementin
your main program. It should look like this:

IF WEERDAY THEN
IF RAINY THEN
WRITELN (‘DRIVE TO WORK’)
ELSE
WRITELN (‘WALK TO WORK’)
(kx ELSE
IF RAINY THEN
WRITELN (/G0 TO MUSEUM’)
ELSE
WRITELN (’FLAY TENNIS’) X)

Runtheprogramfourtimes, testingallcombinationsof Yand Nresponsestothe two
questions. Were there any surprises?

) Next, remove the opening comment bracket from the outer ELSE line and place it
in front of the inner ELSE in the next to last line of the main IF statement. Your outer
ELSE branch should now look like this:

ELSE
IF RAINY THEN
WRITELN (/G0 TO MUSEUM’)
(X ELSE
WRITELN (‘FLAY TENNIS’) X)

Run it four times, testing all Y/N combinations. As before, there should be no
surprises with this abbreviated IF statement. Three of the combinations (YY, YN,
NY) give appropriate messages, while the fourth (NN) gives no message, since the
corresponding ELSE branch has been commented out.

Delete both comment brackets. Now actually delete the ELSE branch that is
inside the outer THEN branch. Your IF statement should look like this:

BRANCHING STATEMENTS: IF AND CASE 161

IF WEEKDAY THEN
IF RAINY THEN
WRITELN (/DRIVE TO WORK’)
ELSE
IF RAINY THEN
WRITELN ¢/GO TO MUSEUM’)

Run it and test all four Y/N response combinations. Any surprises this time? The YY
response should have been okay: you should have seen the rainy weekday message
“DRIVE TO WORK”. But the YN response probably surprised you. You deleted the
branch for a weekday with no rain, so you probably expected to get no message at
all. Instead you got the sunny weekend message, “PLAY TENNIS”, which makes no
sense for a weekday. The other two response pairs, NY and NN, were probably just
as puzzling, since they caused no message to appear. Why was the main ELSE
branch missed? Surely it is right there in your program text. What is going on?

The phenomenon you have discovered here is the famous Pascal abbreviated-IF
bug, and it is a real puzzler the firsttime you encounter it. The problem comes froma
built-in ambiguity of the language. You interpreted the five-line ELSE branch as
belonging to the outer IF WEEKDAY statement. But you could have interpreted that
same ELSE branch as belonging to the inner IF RAINY statement. Your indentation
suggests that you wanted the first interpretation to be true; but recall that Pascal
pays no attention to your indentation scheme. In fact, by changing only the
indentation, you could arrive at a program text that suggests the second
interpretation:

IF WEEKLAY THEN
IF RAINY THEN
WRITELN (/DRIVE TO WORK?)
ELSE
IF RAINY THEN
WRITELN (/G0 TO MUSEUM’)
ELSE
WRITELN (/FLAY TENNIS’)

In fact, your experiment proved that the Pascal compiler chose this second
interpretation over the first one. It associated the five-line ELSE branch with the
immediately preceding IF statement.

162 APPLE PASCAL

The Pascal compiler always associates an
ELSE branch with the immediately preceding
open |F statement. If you do not want that
association, then you must close the immedi-
ately preceding IF statement.

Let's see how to close the IF RAINY statement so that the ambiguous ELSE
branch will be associated with the outer IF WEEKDAY statement. You already know
one way to close a statement: end it with a semicolon. Let's try that. Insert a
semicolon after the inner IF RAINY statement. The first three lines of the IF
WEEKDAY statement should look like this:

IF WEEKDAY THEN
IF RAINY THEN

Run this version. Bad news. It looks as though the semicolon is a case of overkill. It
not only closed out the inner IF RAINY statement, it also closed out the outer IF
WEEKDAY statement. Then the compiler got into trouble when it tried to interpret
ELSE as the beginning of the next statement, which is illegal. Thatis why you got the
compile-time error message at that point. Note that the error message is not at all
helpful.

Return to the EDITOR and delete the semicolon. That stategy did not work. We
need a more limited way to close the inner IF without closing the outer one at the
same time. If we could simply bracket the inner IF, that might do the trick. Since
Pascal has the bracketing words BEGIN and END, let’s try the following strategy.

Bracket the entire IF RAINY statement between the words BEGIN and END. Your
text should look like this now:

IF WEEKDAY THEN
BEGIN
IF RAINY THEN N
~ WRITELN (‘DRIVE TO WORK’)
END
ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM’)
ELSE

WRITELN (‘/PLAY TENNIS’)

Run the new version and test out all four Y/N combinations. Your results should
prove that the bracketing strategy was successful. The five-line ELSE branch was
associated with the outer IF WEEKDAY statement because the BEGIN/END
brackets closed off the inner IF RAINY statement.

BRANCHING STATEMENTS: IF AND CASE 163

bbreviated
For completeress you should know about one other way tocloseana

IF statement in ambiguous situations like this. Go to the EDITOR. Delete thg BEG.IF.I
and change END to ELSE. Your IF WEEKDAY statement should now look like this:

IF WEEKDAY THEN
IF RAINY THEN)
ITELN (/DRIVE TO WORK?)

ELSE
IF RAINY THEN i
WRITELN (/GO TO MUSEUM’)

ELSE N
WRITELN (‘FLAY TENNIS’)

Run this version and confirm that it behaves exactly like the previqug one.

Here is how the extra ELSE worked. When the compiler reached it, it closed put
the immediately preceding open IF statement, which was the IF RAINY, by encoding
a null ELSE branch for it. When the compiler reached the secpnd ELSE, it correctly
associated the following branch with the immediately preceding open IF statement,
which at that point was the IF WEEKDAY statement. .

Which of these two methods is best? Itis largely a matter of taste and you will find
both in common use. We prefer the BEGIN/END brackets because the |ntgnt of the
programmer seems clearer. Using null branches strikes us as being tricky and

ure.

Obs‘Ifinally, you should note that this particular logic bug arises only whenyou Iufsc;a
single abbreviated IF statement as the THEN branch of an ogtgr |IF statement. If the
THEN branch contains an abbreviated IF and even one additional statement, then
you will need BEGIN/END brackets around them anyway aqd the problem goes
away. You also saw that there was no problem using an abbreviated IF statemgnt as
the ELSE branch of an outer IF. So the bug does not happen very often, which is
probably why the results are so surprising when it does happen.

8-7 ANOTHER APPROACH TO MULTIWAY BRANCHES

You have seen that under certain unusual circumstances nestgd IF' statemepts
can get you into trouble. In fact, most people seem to have a hard_tume interpreting
the meaning of nested IF statements, especially as the nesting ge?s d?:pel;
Sometimes you can clarify the branching logic of a program by using the
statement in a different way. . .

Go to the EDITOR and change your BEGIN/END block to look like this:

164 APPLE PASCAL

BEGIN
WRITE (‘IS TODAY A WEEKDAY? “)$
WEEKDAY = YES}$
WRITE (718 IT RAINING? ‘)%

RAINY = YES}#
IF WEEKDAY AND RAINY THEN
WRITELN (‘DRIVE TO WORK’)
ELSE
IF WEEKDAY AND NOT RAINY THEN
CWRITELN (‘WALK TO WORK’)
ELSE ,
IF NOT WEEKDAY AND RAINY THEN
WRITELN (/GO TO MUSEUM’)
ELSE
WRITELN (’FLAY TENNIS’)
END.

Note that we have introduced two new reserved words: AND and NOT.
“WEEKDAY AND RAINY” is a BOOLEAN expression. Its value is TRUE if both
WEEKDAY and RAINY are TRUE; its value is FALSE if either orbothare FALSE. The
point you should note here is that the logic of the first THEN branch is now easier to
follow than before: WEEKDAY and RAINY both have to be TRUE in order to get the
message “DRIVE TO WORK". If either or both are FALSE, then the ELSE branch is
taken.

The ELSE branch is another IF statement. The condition this time is “WEEKDAY
AND NOT RAINY”. The phrase “NOT RAINY” is a BOOLEAN expression that is
TRUE when RAINY is FALSE and FALSE when RAINY is TRUE. It follows from this
that “WEEKDAY AND NOT RAINY” is TRUE only if WEEKDAY is TRUE and RAINY
is FALSE. In that case the THEN branch is taken and we getthe message “WALK TO
WORK?". Otherwise the next ELSE branch is taken.

There we find another IF statement with condition “NOT WEEKDAY AND
RAINY”. Note here that NOT goes with WEEKDAY and not with the whole
expression “WEEKDAY AND RAINY". That is, the condition “NOT WEEKDAY AND
RAINY” is TRUE only if WEEKDAY is FALSE and RAINY is true. In that case the
THEN branch is taken and we get the message “GO TO MUSEUM”. Otherwise we
get to the final ELSE branch.

A look at the previous steps will show that the only way the program could have
reached the final ELSE branch is for the expression “NOT WEEKDAY AND NOT
RAINY” to be TRUE. So no additional IF statement is needed this time. Instead, the
ELSE branch simply writes the message “PLAY TENNIS”.

Run the program and confirm that it works as advertised.

You may have noticed that the logic of this version of your program really breaks
down into four successive cases. This fact would be somewhat clearer if we adopted
a special formatting convention for situations in which each ELSE branchisasimple
IF statement. Change your IF statement as follows:

BRANCHING STATEMENTS: IF AND CASE 165

IF WEEKDAY AND RAINY THEN
WRITELN (‘DRIVE TO WORK’)

ELSE IF WEEKDAY AND NBTARAINY THEN
WRITELN (‘WALK TO WORK’)

ELSE IF NOT WEEKDAY AND RAINY THEN
WRITELN (/GO TO MUSEUM’)

ELSE A
WRITELN (“FLAY TENNIS’)

END.

In a situation like this each ELSE has the meaning “take this branch if none of the
preceding conditions is true.”

8-8 GRAMMAR RULES FOR THE IF STATEMENT

Now is a good time to summarize what you have learned about the IF statement.

The general form of the IF statement is the following:

IF condition THEN statement1 ELSE statement2

The words IF, THEN, and ELSE are reserved words. The condition is gny‘\:vgrc;rc])r
expression that has a value equal to TRUE or FALSE. In other worls,al1I Pasc;
expression of type BOOLEAN. Statement1 and statement2 may be any”egthe asce
statement of any kind, including assignment statements, procedure calls, b o;r
REPEAT, and WHILE statements and even an IF or CASE statement. Staterze?ed o
statement?2 can be either asimple statement or?compound statement, bracke

IN and END, or a null statement. _
usur\allo?eyezgchially that THEN and ELSE act like punctuation marks in thz ?tructctjr::
of the IF statement, separating the condition, statement1, and statement2 from

another.

For that reason it is always incorrect to
place a semicolon immediately before or after
THEN or ELSE.

The only place a semicolon may be required within an I.F statement is instld: a

compound statement, if a compound statement is presentén rt]he IF ste:::rmvsirlwl iryr:g
i il si tatement, and the comp

other semicolon will signal the end of the IF s /

interpret the word following the semicolon as the start of a new statement outside

the IF statement.

166 APPLE PASCAL

The meaning of the IF statement is fairly direct. If the condition is true then
statement1 is executed. If it is false, statement?2 is executed.
The IF statement has an abbreviated form:

IF condition THEN statement

It means that if the condition is true then the statement is performed. If it is false
nothing happens.

As you have seen, the abbreviated form of the IF statement contains a potential
user trap that is very hard to detect. If you use an abbreviated IF statement as the
THEN branch of another IF statement that also has an ELSE branch, then you have
an ambiguous situation. Does the ELSE branch belong to the inner IF statement or
to the outer IF statement? The compiler resolves the ambiguity by always
associating an ELSE branch with the innermost open IF statement when one IF is
nested within another. If that interpretation is not the one you intended, then youare

in trouble. Furthermore, you get no warning. The following rule will keep you out of
trouble.

If you nest an abbreviated IF statement
inside the THEN branch of another IF state-
ment, bracket the entire inner IF statement
between BEGIN and END.

This is how such a nested IF statement should look:

IF conditionl THEN
BEGIN
IF condition? THEN
statementl
END
ELSE
statement?

By this arrangement you will connect the ELSE branch unambiguously with the
outer IF statement.

BRANCHING STATEMENTS: IF AND CASE 167

8-9 THE READ AND READLN PROBLEM

We will turn soon to the CASE statement, the other branching control statement
available in Pascal; but we do so in stages. Clear out your workfile and enter the
following new program.

Note that the program runs in aninfinite loop. Since FALSE is a constantand can
never be equal to TRUE, the REPEAT loop will go on forever. How can the program
be stopped? In just a while you will see.

Within the REPEAT loop, the first statement is a call to READLN with parameter
variables A, OPERATION, and B. A and B are integers and OPERATION is a
character. The rest of the loop is one long IF statement containing a THEN branch
and three ELSE IF/THEN branches. As you saw in Section 8-7, this type of structure
defines a set of separate cases. Which case is executed depends upon the character
value of OPERATION.

Run the program. When it halts, type 2+3.Do notinclude spaces. Press RETURN.
Then type 8-5 and press RETURN. Try 8X9 and RETURN. Try 8*9 and RETURN, and
15/2 and RETURN.

Your program behaves like a simple four-function caiculator, and you should be
able to see fairly clearly how it works. The READLN procedure reads characters as
the user types them on the keyboard. Itinterprets the first character(s) as the digit(s)
of an integer. When it finds a character that is not a digit, it stops processing the
integer and assigns it to the variable A. Next it assigns the nondigit character to
OPERATION. Then it interprets the next character(s) as digit(s) of another integer.
That process stops when a nondigit is typed or when RETURN is pressed, and the
resulting integer value is assigned to B. After the RETURN is pressed the program
halt (caused by READLN) ends.

168 APPLE PASCAL

The IF statement making up the rest of the REPEAT loop then decides which of
the four cases to carry out, depending upon the value of OPERATION. The actual
arithmetic takes place inside the WRITELN parameter list. The symbols +, -, *, and/
are used by Pascal to stand for addition, subtraction, multiplication, and division.
Nothing happened when you typed 8X9 because there was no case corresponding
to OPERATION = "X,

If you followed the directions above, then your program is still running, waiting
for more input. How can you stop it? There are several ways, but this is the most
direct, dependable one: Hold down the CTRL key and the SHIFT key at the same
time while pressing the P key. We will call this operation CTRL-SHIFT-P or
CTRL- @, since @ is the same as SHIFT-P.) You should see the following message
on your screen:

FROGRAM INTERRUFTED BY USER
S¥ Oy F¥ 7y I# 310
TYFE =SFACE> TO CONTINUE

Don’t worry about the numbers on the second line. They indicate where in your
program the interruption occurred. Now press the spacebar. You should see the
screen clear, hear disk activity, and see the message

SYSTEM REINITIALIZED

quickly followed by the appearance of the COMMAND prompt line.

CTRL-@ is one of those system commands, like CTRL-A, CTRL-S, and
CTRL-Z, that can be typed at any level of the system, at any time. CTRL-@ always
causes a fatal halt of any process, including system processes. When you then press
the spacebar the system does a “warm reboot”, equivalent to what it does when you
insert APPLEO: and press RESET during the regular boot-up procedure. CTRL-@
is also equivalent to the I(NITIALIZE command, which can only be used at
COMMAND level.

Run your program again. This time type 3 * 4, including a space after the 3. Notice
that as soon as you typed the asterisk the program halted with this message:

10 ERROR: BAD INFUT FORMAT
S# 1y F¥#1y I# 30
TYFE <SFACE> TO CONTINUE

Press the spacebar. Again the system does a warm reboot. The inclusion of an
innocuous space character in the user input caused a fatal error. Why? Here is the
story. The arrival of the space character signaled the end of the first integer. So A
received the value 3. Then OPERATION received the value '’. Finally, the READLN
procedure was ready to receive numeric digits for B. Instead, the next character
typed was an asterisk, which is not legal as part of an integer: hence the BAD INPUT
FORMAT complaint.

BRANCHING STATEMENTS: IF AND CASE 169

As a programmer you need to be aware of the fact that READ and READLN can
cause fatal errors when used with numeric variables. In fact, the only completely
safe way to get input from a user is by using READ with a variable of type CHAR.
Practical Pascal programs intended for general use will contain quite long and
complex procedures to get user input one character at a time and to attempt to
convert it to numbers or strings. Such procedures must take care of input format
errors without bringing the program to a halt. We will not go into detail here, but will
leave the subject with the following warning:

Never use READ or READLN with numeric
parameters in any program intended for use by
other people.

Since your current program is just for your own use, leave the READLN statement as
is; but type input responses carefully and do not include spaces.

8-10 THE CASE STATEMENT

In the previous section you got no response when you typed 8X9 because the
program didn’t recognize X as a legal operation. You can change the program to
allow X as asynonym for *. Go to the EDITOR and change the second ELSE IF line as
follows:

ELSE IF (OFERATION = “%’) OR (OFERATION = ‘X’) THEN

Note that parentheses are needed when OR or AND are used between expressions
involving relational operations (=, >, <, >=, <= <>). Run the program and press
RETURN.Type9x8and pressRETURN. Having taken careofthatproblem, let'sturn
now to the general structure of the program. As you have seen, itamounts to a set of
four separate cases. Each case is discrete and no case overlaps with any other.
Whenever you have such a situation, you should see whether a CASE statementcan
be used to better effect than an IF statement. You can do so in program
CALCULATOR. Halt the program via CTRL-SHIFT-P. Go to the EDITOR. Make the
following change to the REPEAT statement:

170 APPLE PASCAL

REPEAT

UNTIL FALS

Note that each WRITELN statement is preceded by one or more constants of type
CHAR and acolon. Each WRITELN statement is followed by a semicolon, except the
last, which is followed by END. This whole object, beginning with CASE and ending
with END, is asingle CASE statement. Run the new version and confirm that it works
as before. Try typing 8,9 and RETURN.

The CASE statement is usually preferable to the IF statement when you have
simple, discrete cases. The CASE statement is more compact, clearer, and usually
more efficient.

8-11 GRAMMAR RULES FOR THE CASE STATEMENT
The CASE statement always has the following general form:

CASE expression OF case-list END

Expression stands for anything that has an INTEGER, CHAR, or BOOLEAN value.
(In Session 11 we will extend this set of types.) Expression can be the name of a
variable, a function, a constant, or an arithmetic expression, among other things.
Case-list stands for a list of items, separated from one another by semicolons, with
each item having the following form:

label-list : statement

Label-list stands for one or more constants of the same type as the expression
above. If there are several constants, they must be separated by commas. Statement
stands for any Pascal statement, whether simple, compound, or null. As usual, a
compound statement needs to be bracketed by BEGIN and END.

The first thing that happens when a CASE statement is executed is that the
expression is evaluated. Next, a match is looked for between the resulting value and
one of the constants in one of the label-lists. If no match is found nothing happens. If
a match is found, the corresponding statement is executed.

BRANCHING STATEMENTS: IF AND CASE 171

Itisillegal for the same constant to appear in two label-lists. The compiler detects
this situation and reports an error. Note that only constants may be used in label-
lists. Variables, functions, and expressions are illegal. This fact limits the use of the
CASE statement to situations in which exact matches occur.

Use CTRL-SHIFT-P to stop your program.

8-12 A GRAPHIC APPLICATION

Now let's apply the CASE statement to a graphic application. Clear out the
workfile. Enter the following program.

This program has several familiar features as well as some new ones. At the
coarsest level of detail the BEGIN/END block contains three statements.
INITTURTLE does graphic initializations, putting the turtle in the center of the
screen headed to the right. PENCOLOR (WHITE) enables drawing with a white pen.
The third statement is a REPEAT loop that exits if CH equals 'Q’.

Within the REPEAT loop is another REPEAT loop that exits if something called
KEYPRESS becomes TRUE. Since you didn’t declare KEYPRESS, you've probably
guessed correctly that it is a BOOLEAN function defined in an external unit—
APPLESTUFF in this case. KEYPRESS is normally false. It becomes true whenever a
key on the Apple keyboard is pressed. It goes to false again if you READ the
keyboard.

172 APPLE PASCAL

As soon as the inner REPEAT loop is exited, the program executes a READ (CH)
call, which inputs the character that was typed when KEYPRESS became true.
Finally, the value of CH is used to decide which of the cases to execute in the CASE
statement. If CH =L’ then TURN (90) is executed. If CH ='R’ then TURN (-90) is
executed. (Any other value of CH causes nothing to happen.) The statement TURN
(90) makes the turtle do a 90 degree left turn away from its current heading. TURN
(-90) is a 90 degree right turn. So typing L causes a left turn, and typing R causes a
right turn. At that point the outer REPEAT loop occurs (unless the user has typed a
Q) and the program is quickly back in the inner REPEAT loop.

Run the program. While itis compiling, get your fingers positioned over the L and
R keys. As soon as you see a line being drawn on the screen press the L key a few
times. Now press the R key a few times. If the turtle gets off the screen, type Q and
run again.

As you have seen, the MOVE (1) graphic procedure call has the effect of moving
the turtle forward one screen unit in whatever direction the turtle is headed. The
screen, you recall, is 280 units wide and 192 units high. The MOVETO (X, Y)
procedure also causes the turtle to move, but not necessarily in the direction it is
headed. MOVETO (X, Y) does an “absolute move” from the turtle’s current position
to a new one X screen units from the left edge and Y screen units from the bottom.
MOVE (N) does a “relative move” of N screen units in the direction the turtle is
currently headed. Neither MOVETO nor MOVE affects the heading of the turtle. The
TURN procedure does that, as you have seen. TURN (D) turns the turtle D degrees
to the left (counterclockwise) from its current heading.

There is also a TURNTO procedure, and it is an “absolute turn” to a specific
heading. The following modifications to your CASE statement incorporate calls to
TURNTO.

CASE CH OF
‘R’3 TURNTO (135)%
‘Tt TURNTO (%0)3
‘Y’ TURNTO (45)%
‘F’t TURNTO (180)9%
‘H’: TURNTO (0)9
‘U8 TURNTO (-135))
‘B’ TURNTO (-90)%
‘N7 TURNTO (-45)

END (x CASE x)

Note that the eight letters chosen here as case labels form a sort of square around
the G key. The key to the right of it is H, and the corresponding case in the CASE
statement says TURNTO (0). In fact a TURNTO of zero degrees corresponds to a
heading to the right. TURNTO (90) means an upwards heading, and you see indeed
that the T key is above the center G key. In general, the direction of each key away
from the center key tells the direction you want the turtle to be headed.

Enter this new version of the CASE statement and run the program. Use the eight
new keys to control the absolute heading of the turtle.

BRANCHING STATEMENTS: IF AND CASE 173

If you're having trouble controlling things, you can slow the process down a bit
by putting a wait loop inside the inner REPEAT loop. Change the REPEAT loop as
follows:

REFEAT

MOUE iy '

FOR WAIT $= 1 TO 100 DO
UNTIL KEYFRESSS

Be sure to add WAIT to your VAR block.
The final form of program DRIVER is shown below:

PROGRAM DRIVERS#

USES
TURTLEGRAFHICSy AFFLESTUFF#

VAR
CH ¢ CHARS$
WALT ¢ INTEGER?

BEGIN
INITTURTLES
FENCOLOR (WHITE)$
REPEAT
REPEAT
MOVE (1)3 .
FOR WAIT = 1 TO 100 DO
UNTIL KEYFRESS$
REALD (CH)
CASE CH OF
‘Rt TURNTO (138)5
‘T3 TURNIO (9005
‘Yt TURNTO (45)3
‘Bet TURNTO (1BO)
‘Het TURNTO (0)3
V2t TURNTO (-135)5
‘R’ TURNIO (~20)5
‘Nt TURNTO (~48) 3
END (X CASE X)
UNTIL CH = “Q~
END.,

Run this final version.

174 APPLE PASCAL
BRANCHING STATEMENTS: IF AND CASE 175

SUMMARY
Here is the updated Pascal vocabulary table.
Table 8.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in boldface. (Code: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS)

In this session you saw and did the following things:

® You used READ and READLN to get user input into a running program.

® You used variables of types CHAR and BOOLEAN. Reserved Built-In Built-In Other
8 You defined a BOOLEAN valued function. e Procedures Functions Built-ins
= PROGRAM READ Boolean Constants
;:):glrlas;d IF and CASE statements to control logically alternative branches of a USES READLN a BUTTON FALSE
- CONST WRITE a KEYPRESS TRUE
VAR WRITELN g NONE
You found that the ELSE branch of an IF statement can be omitted. PROCEDURE a NOTE g WHITE
.) FUNCTION a RANDOMIZE g BLACK
:tc;ttje;xpe'ne.r:ﬁgd a common bug associated with nesting an abbreviated IF BEGIN g FILLSCREEN g GREEN
ent within the THEN branch of a regular IF statement. FOR g GRAFMODE g VIOLET
. - TO INITTURTLE g ORANGE
You found that extra semicolons within an IF statement can introduce bugs. DOWNTO g MOVE g BLUE
. DO MOVETO
You used AND, OR, and NOT in BOOLEAN expressions. REPEAT g PENCOLOR Types
. UNTIL TEXTMODE BOOLEAN
You used a succession of ELSE IF constructions to define logical cases. IF g TURN CHAR
INTEGER
® Youfoundthat CTRL-@ can beused atany ti i THEN 9 TURNTO
. Y y time to interrupt a runni
and start a “warm reboot” of Pascal. prartnningprogram C::;:E Units
L OF APPLESTUFF
8 You found that it is dangerous to use READ or READLN with numeric variables. END TURTLEGRAPHICS
® Youused the CASE statement in a graphi icati i
: phic application to as i
presses with different turtle headings. . sociate different key IE)AISD
® You used the BOOLEAN §
activity. KEYPRESS function to detect any Apple keyboard ggD
NOT

" You used the MOVE, TURN, and TURNTO graphic procedures.
QUESTIONS AND PROBLEMS

1. What problems can arise if a program uses READLN with numeric variables?

2. When is it legaland when isitillegal to have a semicolon appear within the text of
an IF statement?

3. What causes function KEYPRESS to return a value of TRUE? What causes it to
return a value of FALSE?

4. Explain the difference between the effects of the MOVE and MOVETO
procedures.

176 APPLE PASCAL

5. Explain the difference between the effects of the TURN and TURNTO
procedures.

6. What is an abbreviated IF statement, and what problems can it cause?

7. Consider the following CASE statement:

CASE X = & OF

TRUE! WRITELN (/GREATER’)#

FALSE:! WRITELN (’LESS THAN OR EQUAL ')
END Ok CASE x)

Is it legal? Justify your answer.
8. Consider the following CASE statement:
CASE X OF
X » 9! WRITELN (/GREATER‘)}$

X <= 5! WRITELN (‘LESS THAN OR EQUAL)
END (x CASE %)

Is it legal? Justify your answer.

9. One of the two CASE statements in questions 7 and 8 is legal. Rewrite itasan IF
statement.

10. Consider the following IF statement:
IF A > O THEN IF B * O THEN WRITE (’X’) ELSE WRITE (‘Y’)

a. Indent it to clarify the meaning.

b. What output would the statement generate for the following values of A and B?

i) A= 1, B= 1
i) A= 1, B=-1
iii) A=-1, B=1
iv) A=-1, B=-1

BRANCHING STATEMENTS: IF AND CASE 177

11. In question 10, change the IF statement so that “ELSE” is replaced by “ELSE
ELSE”. Repeat parts 10(a) and 10(b) for this new version of the statement.

12. In question 10, change the IF statement so that “IF A> 0 THEN" is replaced by “IF
A <0 THEN;”". Repeat parts 10(a) and 10(b) for this new version of the above
statement.

13. The toll charged at a bridge is based on the type of vehicle, the number of
passengers, and the time of day. All trucks are charged $1.00 regardless of the
number of passengers or the time of day. During rush hours, cars with three or
more passengers are free; otherwise the toll is 50 cents. During non-rush hours,

the toll for all cars is 25 cents regardless of the number of passengers. Setup a
program that gets answers to the following three questions:

a. “Isita car?”
b. “Is it rush hour?”
c. “Are there three or more passengers?”
The program should then write the appropriate toll on the screen.
14. Organize the program in question 7 so that it asks no unnecessary questions.

15. Write a program that inputs an arbitrary integer and then generates an output
that depends on the number input as follows:

Input Output
<1 Nothing

1 1ST

2 2ND

3 3RD
4..20 4TH .. 20TH
> 20 Nothing

16. Change the program in question 15 so that it works correctly forintegers greater
than 20. For example, if you input 33, the output should be 33RD; orif you input
101, the output should be 101ST, etc. (Hint: use the MOD operator.)

178 APPLE PASCAL

17. Consider the following program:

18.

19.

PROGRAM TEST#

VAR
N1y N2y N3 ¢ INTEGERS$

BEGIN

WRITELN C(/TYFE IN THREE INTEGERS’)}$
WRITELN (“SEFARATED BY SFACES.’)$
WRITELN (/THEN FRESS RETURN’)$
READLN (N1ly N2y N3)$

IF N1 » N2 THEN

IF N2 » N3 THEN

WRITELN (N3» 7 7y N2y 7 ‘5 NI1)
ELSE IF N1 » N3 THEN

WRITELN (N2y 7 “y N3y 7 ‘y N1)

ELSE WRITELN (N2y “ “y Nily 7 7y N3)
ELSE

IF N3 » N2 THEN

WRITELN (N1y “ ‘s N2y 7 ‘5 N3)

ELSE IF N1 » N3 THEN

WRITELN (N3y» “ 7y N1y * 75 N2)

ELSE WRITELN (N1s 7 ‘y N3y 7 7, N2)
END.

Change the indentation to clarify the meaning.

If the program in question 17 is run using the following inputs, what will the
output be in each case?

a. 10 20 30
b. 20 10 30
c. 203010
d. 30 10 20
e. 3020 10

f. 10 30 20

In an earlier session you learned that in the NOTE fu nction, PITCH values of 20,

21,22, ..., 31, and 32 generate a very nearly chromatic scale beginning at middle
C. Consider the following pattern:

BRANCHING STATEMENTS: IF AND CASE 179

Piano key PITCH Apple keyboard key
C1 20 A
C# 21 W
D 22 S
Eb 23 E
E 24 D
F 25 F
F# 26 T
G 27 G
G# 28 Y
A 29 H
Bb 30 U
B 31 J
c2 32 K

Look at the Apple keyboard and you will discover that the Apple keys listed
above approximate the layout of a piano keyboard. Write a program to “play”
notes until button zero is pressed. |f you press key A, for example, you should
hear middle C; J should produce the note B, and so on. Use the READ function to
call for input at the keyboard. DisablethekeysQ,R,|,0,P,Z,X,C,V,B,N, M, the
comma, and the period, so that if you press these keys, nothing is heard. This
can be done by setting PITCH equal to zero if these keys are pressed.

SESSION

NINE

STRING VARIABLES AND WHILE LOOPS

This session will deal with collections of characters called strings. The concept
of a string of characters is a powerful one and finds a wide range of applications.
Word processing, for example, is solely concerned with inputting, manipulating,
and outputting strings of characters.

Actually, you have already made use of string constants in WRITE and WRITELN
calls. When you wrote WRITELN (MOO’) in Session 3, you were passing the string
constant 'MOOQ' as a parameter to procedure WRITELN.

The ideas about procedures and functions introduced in Sessions 5and 6 will be
generalized here to apply to strings as well as numbers. You have already used the
READ and READLN procedures to input single characters. In this session you will
learn how to extend READ and READLN to input strings of characters.

SESSION GOALS

You will primarily learn how to work with strings of characters, anew type of data,
and will learn how to use the built-in string functions LENGTH, CONCAT, POS, and
COPY, and the built-in string procedure DELETE. Finally, you will learn to use the
WHILE statement to create a program loop different from either the FOR or REPEAT
loop.

9-1 GETTING STARTED WITH STRINGS

Boot up Pascal and get a clear workfile. Of course, be sure not to throw away
anything valuable when you clear the workfile.

The first program that we will work with in this session should be quite familiar to
you. It's program TINY from Session 3, but with a different name. Here it is:

i

181

|
il

182 APPLE PASCAL

Type in the program. Run it and verify that our old friend HOW NOW BROWN
COW is displayed on the screen.

Let's look carefully at this simple program. First, the message HOW NOW
BROWN COW is the parameter of the WRITELN procedure. By parameter, we mean
that it is what the procedure needs to carry out the task involved. The single quotes
on either end of the message set off a string constant, whose value is passed to the
WRITELN procedure.

As the program stands, it couldn’t be simpler, or more useless, for that matter.
There simply isn’t much call for messages about brown cows.

Modify the program so that it appears as follows:

PROGRAM WORDS#

VAR
FHRASE & STRINGS

BEGIN
FHRASE = ‘HOW NOW BROWN COW‘3
WRITELN (FHRASE)

END.

The modifications include adding a VAR block, inserting an assignment
statement in the BEGIN/END block, and modifying the WRITELN statement.

Notice the declaration of a new STRING data type in the VAR block. You have
now seen four different data types: INTEGER, BOOLEAN, CHAR, and STRING.

The variable PHRASE is of type STRING and receives its value in the assignment
statement in the BEGIN/END block. The variable PHRASE is assigned the value
HOW NOW BROWN COW in the assignment statement. Finally, the value of
PHRASE is passed to the WRITELN procedure. The parameter of the WRITELN
procedure is a variable that has a string value rather than the numeric and character
values studied previously.

Leave the EDITOR and run the program. You should have seen exactly the same
output as that of the first program. The output is the same but the method of
obtaining it is fundamentally different than in the first version of WORDS. In this
version, the value of the STRING variable PHRASE is passed to the WRITELN
procedure. Earlier, the value of the string constant’HOW NOW BROWN COW’ was
passed to WRITELN.

You should note that Pascal has a simple “spelling rule” for writing string
constants in the text of a program. The first and last character must be a single-
quote mark (also called an apostrophe). The sequence of characters typed between
single quotes is the value of the string. The quote marks are not part of the value.

You've probably noticed a problem with this rule, namely that you'd have a hard
time making string constants out of sentences containing apostrophes. If youwrote

FHRASE 1= ‘YOU’VE FRORARLY'}

STRING VARIABLES AND WHILE LOOPS 183

the Pascal compiler would interpret the apostrophe as the g/osing quote mark for
the string value YOU. Then the compiler would expect a semicolon or END or other
delimiter. So it would get in trouble and complain about the? word VE.

Here's the way out. Change the line containing your assignment statement as

follows:

OHN’ ‘6 BOOK.’#

FHRASE 1= (11768

Run the new version. ‘ .)
So you see that the spelling rule for string constants contains a special feature.

consecutive pair of single-quotes within the text of astring cqns_tant is interpr_eted as
a single quote character within the string and not as a delimiter of the string.
Change the line containing your assignment statement to read,

PHRASE 3= /73

Leave no space between the quote marks. Run the program.

As you saw, that was grammatically acceptable; b.ut not_h/ng appeared on the
screen when you ran it. Pascal allows you to deal with strings that contain zero
characters. Such a string is called a null string, and you have now seen how to type a

null string as a constant.

9-2 THE LENGTH FUNCTION

Now, let's look at the first of the built-in string functions. Insert the followingline
just before END.

WRITELN (LENGTH (PHRASE))

Don’t forget to insert a semicolon at the end of the preceding ||ng.

Okay, leave the EDITOR and run the program. This time the first line of the output
was blank, as before and the second line contained a zero. Why a zero?.)

Go back and change your assignment statement back the way it was originally:

PHRASE ¢= ‘HOW NOW BROWN COW’#

184 APPLE PASCAL

Leave the EDITOR and run the program. The output is the same except the
number 17 is typed out below the BROWN COW message. What is the significance
of the number 17? Count the number of characters in the phrase HOW NOW
BROWN COW (Don't forget to count the spaces t00.)

You probably have already figured out what the LENGTH function does but it
won’t hurt to go over the details. LENGTH is an example of a built-in function that
has a name, a type, and a value, just like the functions you have already met. Of
course, its name is LENGTH. Its type is declared somewhere in the Pascal system,
so we don't have to declare it. It's easy enough to see what its type is, however. The
value of the string variable PHRASE is passed to the LENGTH function. The function
produces, or returns, an integer equal to the number of characters in the string
passed to it. This means that LENGTH is of type INTEGER. When the function is
evaluated, the integer result of the function takes its place in the Pascal expression.

In turn, the value of LENGTH (PHRASE) is passed to the procedure WRITELN
which displays the numeric value 17 on the screen.

It probably seems as though we have been using unnecessarily stilted words to
describe a simple idea. However, we feel that it is difficult to overemphasize the
importance of the concepts of passing parameter values to functions or procedures
and having a result returned or a process carried out. Once you have these ideas
sorted out in your mind, you will have mastered one of the most important ideas of
programming in Pascal, or in any other language.

Just to firm up the notion of passing parameter values of functions, let's try an
experiment. Go to the EDITOR and modify program WORDS as follows:

PROGRAM WORLDS#H

VAR
FHRASE : STRING#
SENTENCE ! INTEGERS$

BEGIN
SENTENCE 1= 123455
FHRASE (= ‘HOW NOW EBROWN COW’$
WRITELN (LENGTH (FHRASE))}#
WRITELN (LENGTH (SENTENCE))
END.

A new integer variable has been added to the VAR block; its value is assigned in
the BEGIN/END block. Finally, a new WRITELN statement has been added just
before END. Run the program.

We hope you saw Error 125 (error in type of standard procedure) coming. If you
think about the last changes made to the program, it isn’t hard to see why the error
message surfaced. SENTENCE has an INTEGER value but LENGTH requires a
STRING value to be passed to it. The variable SENTENCE may /ook like it should
have a string value but it was declared to be of type INTEGER. /t's the value of a
variable, not its name, that gets passed.

STRING VARIABLES AND WHILE LOOPS 185

One more change. Change the WRITELN statement containing the variable
SENTENCE to read

and then run the program.

This time everything works fine. You can pass either the value of a string
expression or an integer expression to the WRITELN procedure. (You canalso pass
character values to WRITELN.)

Let's sum up what you've learned about the LENGTH function. LENGTH requires
the value of a string to be passed to it, and returns an integer equal to the number of
characters in the string.

9-3 MAKING LONG STRINGS OUT OF SHORT ONES

The LENGTH function seems simple enough. Now let's experiment with another
built-in string function. Go to the EDITOR and modify program WORDS to look as
follows:

PROGRAM WORLDIS#H

FHRASE» WORD1s WORD2, WORD3s WORD4 ¢ STRINGH

BEGIN ¢
WORDL $=
WORDZ t=
WORD3 = E
WORDA &= ‘C
WRITELN (WOR

END.

You've added four more string variables in the VAR block. The values of these
new variables are assigned in the first four lines of the BEGIN/END block. The list of
parameters passed to WRITELN has been changed. ,

What's happening in the WRITELN statement? Now there is a parameter list
consisting of the variables WORD1, WORD2, WORD3, and WORD4. The values of
the words in the parameter list are passed to the WRITELN procedure. Incidentally,
be sure that there is a blank space at the end of each of the strings being assigned to
WORD1 through WORD4. The reason for the spaces is cosmetic, as you will see
shortly.

Ru)rl1 the program. You get the same old sentence about the BROWN COW butitis
being produced in a different way than in the first two versions of the program thgt
you ran in this session. The phrase is built up from the individual string variables in
the parameter list passed to the WRITELN procedure. Of course, if you change the
order of the words in the parameter list, the order of the displayed words will also be
changed.

186 APPLE PASCAL

_AII .right, it's clear that you can build up long strings by putting the parts of the
string in a parameter listand passing the values to the WRITELN procedure. There is
a slicker way to accomplish this that depends on another built-in function

Change the program as follows: '

PROGRAM WORDS?#

VAR
FHRASEy WORD1, WORD2, WORD3» WORD4 ! STRINGS
BEGIN
WORDL = ‘HOW “#
WORDZ2 $= ‘NOW ‘¢
WORD3 = “BROWN “§

WORID4

The values of the parameter list (WORD1 through WORDA4) are passed to the
function CONCAT. The result of CONCAT (that s, its value) is then assigned tothe
string variable PHRASE. The value of PHRASE is passed to the WRITELN
procedure. But what does CONCAT do? Run the program and observe the results.

Once more we are reassured about the BROWN COW, but this result was
produced in still a different way than in the first three versions of program WORDS.
Qne thing is clear: the result of the CONCAT function must be of type string since it
is assigned to PHRASE, which has already been declared to be a string variable.
CONCAT “puts together” the string values of the variables in the parameter list to
for_m the phrase HOW NOW BROWN COW. You may have two or more strings, or

-string variables, as parameters of CONCAT. (CONCAT stands for concatenation’ by
thg way.) The function then glues them together into asingle string. Itis the valué of
this new string that gets assigned to PHRASE and then passed to WRITELN in your
program. ‘

Recall that we advised you to insert a blank space at the end of each of the
assignments of WORD1, WORD2, WORDS3, and WORD4 for cosmetic reasons. If the
spaces are missing, the program will display HOWNOWBROWNCOW. If you
include a space at the end of each of the words in the parameter list passed to
CONCAT, there will be normal spaces between the words.

Now let's do an experiment which will reveal an unfortunate characteristic of this
version of Pascal. Go to the EDITOR and make a few changes to program WORDS.
The new version is shown below:

STRING VARIABLES AND WHILE LOOPS 187

PROGRAM WORDS#

VAR
F y WORDZy WORD3, WORD4 3 STRING#

BEGIN
WORDL ¢= ‘HOW ‘3%
WORD2 3= ‘NOW ‘¥
0: ,

WRITELN (FHRASE)
END.

You've added a new variable (LETTER) of type CHAR, deleted the space at the
end of COW, assigned the character S to the variable LETTER, and added LETTER
to the parameter list being passed to PHRASE. You're probably way ahead and see
that if we concatenate (or glue on) S to our familiar message, we can consider the
BROWN COW in the plural. This certainly seems like a neat way to put things
together.

Run the program. Surprise, surprise! The problem involves a mismatch of
variable types. WORD1 through WORD4 are all of type STRING, so there’s no
problem there. However, LETTER is of type CHAR. You certainly ought to be ableto
append a character to a string, but Pascal doesn’t permit it. Sad but true! So here is
another user trap to avoid. Even if it makes logical sense to glue on or concatenate a
character to a string, Apple Pascal won't allow it.

One final experiment, and we'll be finished with the CONCAT function. Go to the
EDITOR and delete LETTER from the parameter listin CONCAT. Now we want to
rearrange the order of WORD2 and WORD3. Use the X(chng feature of the EDITOR
to change the CONCAT parameter list to the following:

C(WORD1» WORDI, WORDZ, WORDA)E

Leave the EDITOR and run the program. As you see, changing the order of the
variables in the parameter list changes the order in which the words are glued
together.

Remember that the parameter list passed to CONCAT must consist of either
strings or string variables. We could have added an S to the BROWN COW phrase by
doing this:

FHRASE != CONCAT (WORD1y WORD2y WORD3» WORD4y ‘S7)3

188 APPLE PASCAL

This time it isn't a variable of type CHAR that is being glued on, it is the constant
string’S'. You can mix constant strings with string variables in the parameter list any
way you desire. You can’t, however, use anything other than values of type string in
the list.

Actually, Apple Pascal is quite forgiving about single-character constants such
as 'S’. It will treat them as being either of type STRING or of type CHAR, as
appropriate. You don’t have to worry about the ambiguity.

9-4 LOCATING ONE STRING IN ANOTHER

You've learned all there is to know about the LENGTH and CONCAT functions.
LENGTH required a string to be passed to it and returned an integer. CONCAT
required a parameter list of strings or string expressions to be passed to it and
returned a longer string consisting of the parts glued together. The next string
function to experiment with is like LENGTH in that it returns an integer, but is quite
different in that it requires exactly two strings as parameters.

Modify program WORDS until it looks as follows:

PROGRAM WORLSH

VAR
FHRASE, WORD1, WORD2, WORD3, WORD4 ¢ STRINGS
FIRSTLETTER ! INTEGER$

BEGIN
WORD1 = ‘HOW “#
WORD2 = ‘NOW ‘%
WORD3 = “EBROWN ‘§
WORD4 = ‘COW’;5

FHRASE t= CONCAT (WORD1, WORD2, WORD3s WORDA)$

WRITELN (FHRASE) ;

FIRSTLETTER i= FOS (‘BROW

WRITELN (FIRSTLETTER)
END.

Here are the changes. An INTEGER variable FIRSTLETTER has been added to
the VAR block. A new function POS has appeared. Its parameters are the constant
'BROWN’ and the variable PHRASE. The value of the function is assigned to the
INTEGER variable FIRSTLETTER. Okay, great! So what does POS do? As always,
the best way to find out is to run the program and see.

Run the program. You certainly were expecting HOW NOW BROWN COW. But
what does the 9 indicate? Well, the string 'BROWN’ is involved, as is the string
PHRASE which has the value HOW NOW BROWN COW. Note that the Bin BROWN
is the 9th character in PHRASE (don’t forget to count the spaces as characters).

The first string in the parameter list of POS is called the target string. It is the
string you are shooting for. The second string in the parameter list, the source
string, is the one that may contain the target string. The value returned by POS is an
integer and is equal to the character position of the first occurrence of the target in
the source string.

STRING VARIABLES AND WHILE LOOPS 189

What would happen if you turned the arguments around in the POS function?
Modify the statement containing the POS function to

FIRSTLETTER = FOS (FHRASE, ‘BROWN?)S

and run the program. How can you interpret the result of 0? It's easy. The value of
PHRASE (the string HOW NOW BROWN COW) does not occur in the string
BROWN. If the target string cannot be found in the source string, a value of 0 is
returned by POS.

Here's a different wrinkle. Change the FIRSTLETTER assignment statement to
read

FIRSTLETTER = POS (WORL4, FHRASE)S

When you first used the POS function, the target string was the string constant
'BROWN'. Now it is the string variable WORD4. In CONCAT, it didn’t make any
difference whether you used a string constant or a string variable, so it should be
okay here. If so, then the POS function will look for the target WORD4, which has the
value COW, in the source string PHRASE, which has the value HOW NOW BROWN
COW. Do a little counting, and if everything works as advertised, FIRSTLETTER
should have the integer value 15. Run the program and see what s printed out. Were
you right?

How about this variation?

FIRSTLETTER 3= FOS (’0W’y FHRASE)

There are four occurrences of 'OW’ in HOW NOW BROWN COW. Which one will be
located by POS?

Make the necessary changes in the program and run it. That settles the issue of
multiple occurrences of the target in the source string. POS locates the first
occurrence, starting from the left.

Change the assignment statement for FIRSTLETTER to read

FIRSTLETTER ¢= FOS (’ ‘» FHRASE)}

and then run the program. The question here is “Does it make any sense to use a
space for a target string?” The result of 4 shows that the answer is yes. The space
character is a perfectly good target string and is routinely used to locate word
boundaries in strings.

190 APPLE PASCAL

The last thing to check about the POS function is whether or not the null string
can be used as a target string. Change the FIRSTLETTER statement to

FIRSTLETTER = FO8 (77y PHRASE)}

There are no characters inside the single quotes that define the target string; hence
the target is the null string. Run the program and see what happens?

You could probably have predicted what happened. By definition, PHRASE
consists of characters. A character certainly can’t be a null string. Thus, there is no
match of the null string in the source string PHRASE and POS returns a value of 0.

So, chalk up another function. POS requires a target string and a source string as
parameters, and returns an integer value equal to the position of the first character
of the target at the first occurrence of the target in the source string. If the target
can’t be found in the source string, POS returns a value of zero. Any string, can be
used for the target or the source. You may not use values of type CHAR as
parameters of POS.

9-5 EXTRACTING PIECES OF STRINGS

Let’s plunge right ahead to the next string function. Modify program WORDS to
appear as follows:

PROGRAM WORDSH

VAR
FHRASEy WORD1y» WORD2y WORD3» WORD4 ! STRINGS
FIECE ! STRING#

BEGIN
WORD1 = ‘HOW “#
WORD2 = ‘NOW “}§
WORDZ = ‘BRROWN ‘#
WORD4 = ‘COW’ s

FHRASE = CONCAT (WORD1y WORDZ2y WORD3y WORD4)3
WRITELN (FHRASE)$
OFY HRASEs S5y 9)%

There are a couple of interesting things about this version of program WORDS.
First, note that there are two separate declarations of string variables. This is the first
time this has been done in the book. As a matter of fact, you may have as many
declarations of any of the variable types as you want, and in any order. Sometimes it
makes more sense to use two declarations of variables of type string (the case
above) than to have a long list of variables extending over into the right half of the
Pascal page. It is a matter of taste.

STRING VARIABLES AND WHILE LOOPS 191

There are no other changes in the program down through the WRITELN
(PHRASE) statement. COPY is a new function. As you can see, it has a string and
two integers as parameters. COPY must return a value of type STRING since the
result is assigned to PIECE, which was declared to be a variable of type STRING.

Run the new version of the program. Did you anticipate what happened? As you
can see, COPY extracts a substring from the source string which, in this case, is the
string variable PHRASE. The substring begins at character number 5 and extends
for 9 characters. The first item in COPY’s parameter list is the source string. The
second item is an integer giving the starting position of the substring to be extracted.
The third item in the list is an integer giving the length of the substring in characters.
So, if you count over 5 characters in HOW NOW BROWN COW and take the next 9
characters, you get the substring NOW BROWN, which is exactly what the computer
did in the above example.

Of course, there are several questions that arise immediately. What happens if
the starting point is outside the length of the source string? What if the length of the
substring is a negative number? What happens if the length of the substring extends
pastthe end of the source string? What happens if the length of the substring is set to
zero?

You are capable of answering these questions without any further specific
directions. Modify the COPY function in program WORDS to obtain the answers to
the questions in the paragraph above.

9-6 ELIMINATING PIECES OF STRINGS

There is another string operation that is closely related to COPY. This is the
DELETE procedure. It works exactly the same as COPY except that DELETE returns
what is left of the source string after the substring is deleted.

To see how this works, modify program WORDS as follows:

PROGRAM WORDS#

VAR
FHRASE y WORDL, WORD2y WORD3» WORD4 ! STRINGS
BEGIN
WORIIL 3= “HOW ‘%
= ONOW Cd
= CBROWN 79
= COW’ s
= CONCAT (WORDLy WORDZ2y WORD3y WORDG)$

N (FHRASE) §
LETE (PHRASE: 95 &)}
WRITELN (FHRASE)
END.

DELETE is fundamentally different than the other string operations studied thqs
far because it is a procedure rather than a function. Note that the result of DELETE is
not assigned to anything. DELETE clearly does something to the source string

192 APPLE PASCAL

PHRASE. Based on what we have said and your experience with COPY, you can
probably figure out what it does.

Run the program. Did you anticipate what happened? If you begin at character
number 9 in string variable PHRASE (which has the value HOW NOW BROWN
COW), and delete 6 characters, the result is HOW NOW COW.

You should note an important Pascal capability here: the string variable PHRASE
in the call to DELETE is used both to pass a parameter value to that procedure and
also to return the result back to the caller. That is why the value of PHRASE is
different before and after the call to DELETE. This is one of the few times that you
have seen a variable name (PHRASE) used to pass a value back to the caller after the
call to a procedure or a function.

Let’s look at this more closely. Change your call to DELETE as follows;

DELETE (/HOW NOW EBROWN COW’y 95 604

Run the program. Did that result surprise you?

The reason the change got you into trouble is that you cut off the two-way
communication channel between the main program and procedure DELETE. The
main program sent the value HOW NOW BROWN COW to DELETE, but there was
no way for it to receive the shortened string with BROWN deleted. The rule is that
you must always use a variable name as the parameter of a procedure (or function)
that will change that parameter.

Obviously, one of the things you must know about any built-in procedure or
function is whether any of its parameters are of this kind. Such parameters are called
reference parameters, while the other kind of parameters that only pass values into
procedures or functions are called value parameters. The DELETE procedure has
one reference parameter and two value parameters.

When you write procedures of your own you must distinguish reference
parameters from value parameters. We haven’t shown you how to do that, but you
will see an example soon.

As with the COPY function, there are a number of additional questions that
should be answered. Can the length of the substring to be deleted be negative? What
happens if the length of the substring to be deleted extends past the end of the
source string? What happens if the starting point of the substring is either negative

or extends past the end of the source string? Use the computer to answer these
questions.

9-7 COMBINING STRING OPERATIONS

We've gone about as far as we can with program WORDS. Now it's time to see
several of the string operations combined together in a program.

STRING VARIABLES AND WHILE LOOPS 193

Clear out program WORDS from your workfile and enter the program below.

As you can see, this program is a simple one. PHRASE is declared a string, asin
program WORDS. The difference in this program is that EHRASE getsits value from
the READLN procedure. Recall from your experience with the.READLN.procedu're
that information typed in at the keyboard is assigned to the variable thatis named in
the READLN parameter list. (Note that READ and READLN. have reference
parameters while WRITE and WRITELN have value parameters. This means thatyou
may use only variables as parameters for READ and REAQLN.)

You should be able to predict correctly what will happen if you run the program.
Think about it a minute and then run the program. What happened":’ i

The problem seems to be that nothing is happening. The usual .RUNN.ING...
line appears at the top of the screen indicating that .the computer is running thp
program, but then everything halts. There is not_hmg wrong; the compute.r is
executing the READLN (PHRASE) statement and is waiting for you to type in a
Stn'?'gy]be in THE QUICK BROWN FOX and press RETURN. What produced the plank
line between your inputand the same line typed back by the program? If you said the
empty WRITELN statement, then you're right. The;re is no parameter for WRITELN
so nothing is printed. However, after printing nothing, it output a RETURN so a new
line can be started. Simply stated, an empty WRITELN statement produces a blank
line. The value of PHRASE is the string you typed in (THE QUICK BROWN FOX) and
this value is passed to the second WRITELN procedure. .

It would make more sense from the user’s point of view if a prompt appeared on
the screen before the READLN statement, giving some clue about what was
expected. This would avoid the possible confusion that results when the program
runs and nothing seems to be happening.

Go to the EDITOR and insert the line

just after BEGIN; then run the program.

194 APPLE PASCAL

All right, it is clearer now. If you type in the same sentence, the screen display
should be

RUNNING. ..
TYFE A SENTENCE AND FRESS RETURN
THE QUICK BROWN FOX

THE QUICK EBROWN FOX

By now, you should be getting quite adept at sorting out the source of the
information on the screen. The computer generated the top line. The program was
the source of the second line. You were the source of the third line. The program was
the source of the blank line and line five.

Let's introduce a few familiar string functions into this program. Modify the
program so it looks as follows:

PROGRAM SENTENCES$
VAR

BEGIN
WRITELN (‘TYFE IN A SENTENCE AND FRESS RETURN)$
READLN (FHRASE) §

A new variable COUNT, of type INTEGER has been added. Instead of the last
WRITELN statement, a FOR statement involving both COUNT and LENGTH
(PHRASE) has been added. Notice particularly that there is a single statement
following the FOR statement. That is why there is no need to bracket it in a
BEGIN/END block.

Well, what does the program do? Before running it, why don’t you see if you can
figure out what will happen? Give the program a few moments thought.

Now run the program, and at the input prompt, type in the string ABCDEFGH-
IJKLMNOPQRST. As you can see, a COPY function embedded inside a FOR
statement can produce interesting results. Were you correct about the output?

Now let's try to make the program type out fragments of the input string
beginning with the complete string. Change the last WRITELN statement to read:

STRING VARIABLES AND WHILE LOOPS 195

Run the program, and at the input prompt type in ABCDEFGHIJKLMNOPQRST.

Check the output carefully. The last letterin yourinputwas T, but the last letter in
the first line of the output is S. What's wrong? Well folks, it's our old friend OBOB the
Off-By-One-Bug. Once identified, the problem is easy to correct. Change the
WRITELN statement to read:

Run the modified program and type in any sentence or phrase you want. Now
everything works as advertised.

This program is a good one to demonstrate the use of several string operations
and how they can be combined.

9-8 MISCELLANEOUS FACTS ABOUT STRINGS

In most practical computer applications, strings play the main role of
communicating textual information to the user and receiving textual input from the
user. Despite a few shortcomings, the Apple version of strings in Pascal is one of its
most attractive features. The built-in functions and procedures you have been using
will allow you to produce clear tabular output and to analyze responses typed by a
user. This section summarizes additional facts about Apple Pascal strings.

As you have seen, a given string variable, such as PHRASE in your current
program, can be assigned strings of different lengths. You may have wondered
whether there is an upper limit to the size of strings. There is. If you had typed in a
sentence longer than 80 characters, for example, your current program would have
come to a halt and reported a “value range error”.

You can change the 80 character limit. Go to the EDITOR and change the VAR
block as follows:

Your Apple keyboard seems to lack the square bracket keys, but they are there. Type
CTRL-K for the left bracket and SHIFT-M for the right bracket. Run the program.
When prompted, type a single short word. Then run again, and this time, type a
sentence withmore than 10 characters. Note that PHRASE starts withonly 10 char-
acters.

This shows how to shorten the maximum length of a string variable. You can use
the same method to increase the maximum length up to a ceiling of 255 characters.
That is the upper limit in Apple Pascal. As you have seen, if you do not specify a
maximum length for astring variable, then alength of 80 charactersis assumed to be
the maximum. Go to the EDITOR and delete the string length specification from
your VAR block.

196 APPLE PASCAL

So far you have seen how to use COPY and DELETE to getat substrings withina
string value. There is also a very different way to get at the individual characters that
make up a string. Change the FOR statement of your program as follows:

FOR COUNT i= 1 TO LENGTH (PHRASE) DO
WRITELN (FHRASE L[COUNTI)

Run the new version. If all went well, you should see each character of the sentence
you typed, one under the other at the left margin of the screen. PHRASE [COUNT]
refers to a single character of the string PHRASE. When COUNT =1, it is the first
character; when COUNT = 2, it is the second, etc.

You can also use this method to assign values to the individual characters in a

string. The following changes in your program will change all space characters in
PHRASE into plus signs:

FOR COUNT = 1 TO LENGTH (FHRASE) DO
IF FHRASE LCOUNT1 = ' ‘ THEN
PHRASE LCCOUNT1 = “+'%
WRITELN (FHRASE)

Make these changes and run the program. In general, you can use PHRASE
[COUNT] in the text of a program whenever itis legal to use a variable of type CHAR.

Note that the whole string is of type
STRING, but each character is of type CHAR.
You will get a type-conflict error if you use a
character component of a string in a place
where a string is expected.

To drive that point home, think about the fact that a string with length equal to one is
different from data of type CHAR, even if they equal the same letter of the alphabet. If
CH is a variable of type CHAR and ST is a variable of type STRING, the following
statements are legal:

8T

CH $s
N

STRING VARIABLES AND WHILE LOOPS 197

But all these are illegal:

ST 3= CH#

CH = 8T

ST = CONCAT (8Ty» ST L11)#
IF 8T = 87 [11 THEN#

The final facts to consider here are restrictions on the use of strings. First, you
may not define a function of your own that returns a string value. (This is a pity,
since, as you have seen in your work with built-in functions such as COPY and
CONCAT, user-defined string functions would be very useful.) Second, you may not
use strings as case labels in a CASE statement. (This is another pity; the application
need is quite common.) In contrast, character-valued functions are legal, and
character constants may be used as case labels in a CASE statement. Perhaps some
future version of Pascal will finish the job of building the string data type into the
language in a more complete and natural way. In the meantime, you should be aware
of present limitations; but you should also be thankful that you have strings at all.
Many versions of Pascal have no string data type.

9-9 A WORD PROCESSING PROGRAM

With a few changes, program SENTENCE can be converted into a program that
is the heart of most word processing systems. Let’s look at the new program and
then review the changes.

PROGRAM SCANNERS$

CONST
SkACE = ¢« §

VAR
FHRASE ! STRINGS
FIRST : INTEGER#

BEGIN
WRITELN (‘TYFE IN A SENTENCE AND FRESS RETURN’)#
READLN (FHRASE) #
WRITELNY
REPEAT
FIRST i= FOS (SFACEs PHRASE)
WRITELN (COFY (FHRASEy 1y FIRST - 1))4
DELETE (FHRASE» ls FIRST)
UNTIL FIRSY = 0O
END.

198 APPLE PASCAL

You may want to clear out the workfile and enter the program from scratch. If you
want to modify program SENTENCE, here are the changes: the program name has
been changed to SCANNER, a new constant called SPACE has been declared, the
integer COUNT has been changed to FIRST, and a REPEAT block has been inserted
after WRITELN.

Either way, make sure that you have the program exactly as listed above. Now
let's discuss what is going on. The constant SPACE has been set equal to the space
character in the CONST block. (Pascal will treat SPACE as being of type CHAR or
STRING as needed.) The significant changes are in the REPEAT block. In the first
line of this block, FIRST is assigned the value of the POS function which locates the
first occurrence of a space in the string PHRASE. This value is an integerandis one
greater than the length of the first word in the string PHRASE. In line two of the
REPEAT block the first word of PHRASE is written out. You can see it is a word
because it is the value of COPY working on PHRASE, starting at character 1, and
continuing for one less than FIRST characters. This writes everything up to the first
space, but not including the space. In the next line, DELETE deletes the first word
from PHRASE and the space following the word. This process repeats until FIRST
has a value of zero, which will occur when there are no spaces left in PHRASE.

It should be reasonably clear to you that the program is intended to break apart
into separate words any phrase you enter, and then write out these words in a
vertical column. Run the program and type in EVERY GOOD BOY DOES FINELY at
the input prompt. Did you get the five words typed back in a vertical column?

I1t's OBOB again, but this time in different clothing. You got four words instead of
the expected five. We are Off-By-One but thistime it'saword thatisinvolved. What's
wrong?

Try the program again, and enter EVERY GOOD BOY DOES FINELY, but this
time type a space after FINELY. Okay, this time it works, but you would have to
remember to include a space at the end of your input string whenever you type itin.
This is artificial and flies in the face of good user engineering. How can the problem
be fixed?

Notice that the test (UNTIL FIRST =0) in the REPEAT loop is done after the loop
is executed. Here is where the problem lies. After the next to last word is typed out,
there are no spaces left; so the program exits from the REPEAT loop, losing the last
word. Having the user add the extra space solved this problem, but there surely must
be a better way to straighten things out.

One way to repair the erroris to use an IF statementinside the REPEAT block. Go
to the EDITOR and change the REPEAT block as follows:

REPEAT
FIRST $= FOS (SFACEs FPHRASE)$
IF FIRST * O THEN
BEGIN
WRITELN (COPY (FHRASEy 1y FIRST - 1))%
DELETE (FHRASEy 1y FIRST)
END
ELSE ; ‘
WRITELN (PHRASE)
UNTIL FIRST = 0

STRING VARIABLES AND WHILE LOOPS 199

Study this segment carefully and be sure that you can explain the presence or
absence of a semicolon at the end of each line.

Now, as long as FIRST >0, the program works as it did in its original form. When
FIRST =0, the ELSE clause is invoked, which causes PHRASE to be written out. But
at this point, PHRASE is simply the last word in the sentence that was entered. This
is precisely the condition we were seeking; we have cleared up the problem without
the user having to include a space at the end of the input phrase.

Run the program and type in a sentence. Verify that you get all the words back,
typed in a vertical column.

As with most problemsin programming, there is usually more than one solution;
and our problem with SCANNER is no exception. Delete most of the IF statement
from the program and add one line. The program should look like this:

PROGRAM SCANNER?$

CONST
SPACE = 7 %

VAR
FPHRASE ! STRING#
FIRST ¢ INTEGEK$

BEGIN
WRITELN (/TYPE IN A SENTENCE AND FRESS RETURN’)#
READLN (FHRASE)
WRITELN$
FHRASE = CONCAT (FHRASEs SFACE)}
REPEAT
FIRST &= FOS (SFACE» FHRASE)#
WRITELN (COFY (FHRASEy 1y FIRST - 1))3#
DELETE (FHRASE» 1» FIRST)
UNTIL FIRST = 0
END.

You are back to the original form of the program but there is a new statement just
before REPEAT. By using the CONCAT function to glue on aspace atthe end of the
input sentence, the user doesn’t have to remember to put one there.

Try this new program. The only problem remaining is a subtle one. There is a
blank line at the bottom of the display that wasn’t planned. Let’s see yet another way
to cure theinitial problem, and while we're at it, avoid the extra line that showed up in
the last version.

Go to the editor and modify the program to appear as follows:

200 APPLE PASCAL

PROGRAM SCANNER$

CONST
SFACE = 7 ' #

VAR
FHRASE ¢ STRING#
FIRST ¢ INTEGERS$

BEGIN
WRITELN (‘TYFE IN A SENTENCE AND FRESS RETURN’)$
READLN (FHRASE) §

WRITELN$

FHRASE = CONCAT (FHRASE, SFACE)}

WHILE LENGTH (PHRASE) > 1 DO

. PEGIN
FIRST $= FOS (SFACE» PHRASE)}
WRITELN (COFY (FPHRASEs 1, FIRST — 1))
DELETE (FHRASEs 1, FIRST)

END (X WHILE %)
END.

The new feature in this version of SCANNER is the WHILE control statement. Its
structure is very similar to that of the FOR statement. As long as the condition stated
in the WHILE statement is true, the statement following the word DO will be
executed. The essential difference between the WHILE and REPEAT statements is
that the test is made before executing the loop inthe WHILE statement, whereas itis
made after executing the loop in the REPEAT statement.

The body of a WHILE statement may or may
not be carried out. The body of a REPEAT
statement is always carried out at least once.

Try out this new version. It accomplishes precisely what was desired. There are
no extra lines at the bottom of the screen, and the user needn’t remember to include
an extra space at the end of the input string.

This program, or one like it, is the heart of any word-processing system. It breaks
a string apart into words, which can then be handled by other parts of the word
processing program.

It is worth noting that you have now been introduced to all the major Pascal
statements that you will meetin this book. There are a few more capabilities that you
will learn but the major work is done.

You will need this program in Session 11. Save it on your PROGRAM: diskette
under the name SCANNER using the method described in Section 4-9.

STRING VARIABLES AND WHILE LOOPS 201

9-10 GRAMMAR RULES FOR THE WHILE STATEMENT

Since Pascal contains only a small number of distinct statement types, it is a
good idea to learn the “sentence structure” of each kind. The WHILE statement form
is particularly easy to remember, since it is very close to that of the FOR statement.
As you know, the FOR statement'’s structure is this:

FOR variable := initial-value TO final-value DO statement

(An alternative form uses the reserved word DOWNTO in place of TO.) Similarly, the
WHILE statement has the form

WHILE boolean-expression DO statement

Note that in both cases the term statement can represent either a simple
statement or else a compound statement. In other words, if more than one simple
statement forms the body of a FOR loop or of a WHILE loop, then the statements
must be separated by semicolons and bracketed by a BEGIN/END pair.

The other type of loop, the REPEAT loop, has a slightly different grammatical
structure, in which the reserved words REPEAT and UNTIL play the same
bracketing role as BEGIN and END. For that reason there is no need for a
BEGIN/END pair to enclose the set of statements that make up the body of the
REPEAT loop.

The term boolean-expression in the definition of the WHILE statement stands for
anything you can write that has a value that is either true or false. For example,
expressionssuchasN < 20or X=0are legal, as are boolean-valued functions, such
as BUTTON, or variables declared to be of type BOOLEAN.

As you have seen, the first thing that happens when a WHILE statement is
executed is that the boolean value is computed. If it is false nothing else happens,
and the body of the loop is not executed. If the value is true, however, then the body
of the statement (simple or compound) is executed once. Then the booleanvalue is
computed again. If false, the loop terminates. If true, the loop continues.

We can use this understanding of the WHILE loop to state more clearly how a
FOR loop works. Consider the following FOR statement:

FOR I = initisl~-value TO final-value DO
loor~-statement

The following WHILE statement has exactly the same effect:

I ¢= initial-value$
WHILE I <= final-value DO

BEGIN
loor-statement$
I =1+ 1

END

202 APPLE PASCAL

If in the FOR statement the word TO was changed to DOWNTO, then the equivalent
WHILE statement would be

I = dinitial-valued
WHILE I »= final-value DO

BEGIN
loor—-statement$
I t= - 1

END

A simple example of the use of the WHILE statement arises when one needs to
get from the user of a program a yes or no answer to a question. Here is an example
of a first cut at such a program segment:

WRITELN (/D0 YOU WANT INSTRUCTIONS?) $
READLN (ANSWER) $
IF ANSWER = ‘YES’ THEN
wes-Frocedure
ELSE
no-Frocedure

The problem with this approach is that if the answer was YEP or OK or SURE, then
the program would do the no-procedure. The easy way to deal with this difficulty is
to insert a WHILE statement as follows:

WRITELN (710 YOU WANT INSTRUCTIONST) #
READLN (ANSWER) #

WHILE (ANSWER <> ‘YES’) AND (ANSWER < ‘NO‘) DO
BEGIN
WRITE ¢(’FLEASE TYFE YES OR NO -— ‘)%

READLN (ANSWER)
END$ (X WHILE X)
IF ANSWER = ‘YES’ THEN
ges-rrocedure

ELSE
no-Frocedure

In the above example, the WHILE loop is not executed at all if the answer is YES or
NO. Other answers result in the prompt PLEASE TYPE YES OR NO — and a new
READLN, repeated until the answer is YES or NO. After the WHILE loop is exited, the

IF statement works correctly.

STRING VARIABLES AND WHILE LOOPS 203
SUMMARY
Let's summarize the key points that you have learned in this session.

® Youlearned that LENGTH is a string function that has an integer value equal to
the number of characters in its string parameter.

B You used the string function CONCAT to glue together the strings in its
parameter list.

® You used POS to find the position of the first appearance of a target string in a
source string.

® You used COPY to extract a copy of a substring from a source string.

® Yousaw that DELETE is a procedure to remove a substring from a source string.
® You learned how to specify the maximum length of a string variable.

® You found that the longest allowed string was 255 characters long.

B You used square-bracket notation to refer to individual characters in a string.

® You found that individual characters were of type CHAR and that errors occur if
you use them where STRING variables are expected.

" You us_ed the built-in string functions and procedures to write a program to scan
an entire phrase and pick off each word separately.

" You l.ls.ed the WHILE statement to cause a loop to be executed as long as the
condition expressed in it was true.

B You saw that the WHILE statement could be used to gi i initi
give a precise definition of
the way the FOR statement works. "e

204 APPLE PASCAL

Here is the updated Pascal vocabulary table.

Table 9.1

declared in TURTLEGRAPHICS)

Reserved
Words

PROGRAM
USES
CONST
VAR
PROCEDURE
FUNCTION

BEGIN
FOR

TO
DOWNTO
DO
REPEAT
UNTIL
WHILE
IF
THEN
ELSE
CASE
OF
END

DIV
MOD

AND
OR
NOT

QOO »» N

Built-In
Procedures

DELETE
READ
READLN
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURNTO
VIEWPORT

QUESTIONS AND PROBLEMS

Built-In
Functions

Boolean
a BUTTON
a KEYPRESS

Integer
LENGTH
POS

a PADDLE

a RANDOM

String
CONCAT
COPY

1. What is the type of function CONCAT?

2. What values are required as parameters for DELETE?

3. What is the type of function COPY?

4. What values are required as parameters for POS?

Cumulative Pascal vocabulary. New words introduced in this session
are printed in boldface. (Code: a = declared in APPLESTUFF; g

Other
Built-Ins

Constants
FALSE
TRUE

g NONE

g WHITE

g BLACK

g GREEN

g VIOLET

g ORANGE

g BLUE

Types
BOOLEAN
CHAR
INTEGER
STRING

Units
APPLESTUFF
TURTLEGRAPHICS

STRING VARIABLES AND WHILE LOOPS 205

The following three problems are based on strings that have these values:

81 = ‘A BIRD IN THE HAND ‘3
82 i= ‘I8 WORTH TWO IN THE BUSH ‘%
83 = ‘RUSH’

5. What is the value of:

V]

. LENGTH (S81)
b. CONCAT (S2, S1)
c. POS ('THE', S1)
d. POS ('BUSH’, CONCAT (S1, S2, S3))
e. POS (S3, S1)
f. POS (S3, S2)
g. POS (S3, S3)
6. What is the value of:
a. COPY (81, 1, 1)
b. COPY (S2, 4, 9)
c. COPY (S3, 3, 5)
d. COPY (S1, 1, 0)
e. COPY (CONCAT (S1, S2), 23, 5)
f. COPY (S1, POS (TWO’, S2), 5)
7. What are the values of S1 or S2 after the following procedure calls:
a. DELETE (S1, 1, 2)
b. DELETE (S2, 3, POS ('H’, S3))

c. DELETE (S1, 5, LENGTH (S3))

206 APPLE PASCAL

8. Which of the following WRITELN calls are legal? For the legal ones, what will be

written on the screen?
a. WRITELN ()

b. WRITELN ()

c. WRITELN ()

d. WRITELN ()

e. WRITELN (", ™)

9. Modify program SCANNER so that if multiple spaces occur in the input string,

the program will not print out “null” words.

10. Write a program to count and print out the number of times each vowel occursin

11

12.

13.

an input string to be typed in at run time.

- Write a program to find the number of times STRING 1 occurs in STRING 2, if
both strings are to be typed in at run time.
Write a program to call for input of a string. Search through the string and
replace each occurrence of 'A’ with 'Z’; then print the modified string on the
screen.
If ST is a string with value equal to’ABCDEF’, A is avariable of type CHAR, and B
is a variable of type STRING, which of the following assignment statements are
legal?

a. A:= ST [4];

b. A := COPY [ST, 4, 1];

c. A:="D;

d. B := ST [4];

e. B := COPY [ST, 4, 1]; ’ .

f.B:='D";

14. Write a program to call for the input of a string; then print the string back on the

screen in reverse order.

STRING VARIABLES AND WHILE LOOPS 207

15. If you run the following program and at the input prompt type in any string of

characters and press RETURN, what will be displayed on the screen?

FROGRAM GUESSS

VAR
STy BLANK ¢ STRINGS
COUNT ¢ INTEGERS?

BEGIN
WRITELN 7 TYPE IN A STRING’)§
WRITELNS
READLN (8T) 5
WRITELNS
BLANK $= “73}
FOR COUNT $= 1 TO LENGTH (8T) DO
BEGIN
ELANK &= CONCAT (7 “y RLANKy COFY (STy» COUNTy 1))
WRITELN (BLANK)$
DELETE (BLANKy COUNT + 1» 1)
END Ok FOR %)
END.

SESSION

TEN

NUMBER TYPES AND ARITHMETIC

Now that you have completed nine sessions and used nearly all the Pascal
statement types, it has probably occurred to you that you have learned a great deal
about Pascal without getting involved in detailed manipulation of numbers. The fact
is that that you needn’t do “number crunching” simply because you are
programming a computer. Even in scientific and engineering programs there are
many more statements that deal with loops, conditions, procedure definitions, and
the like than there are statements that carry out numerical computations.
Nevertheless, sooner or later, you will want to make use of the numeric and
arithmetic facilities of Pascal. If your mathematical skills are rusty, relax. We are not
going to embark upon a dissertation on esoteric mathematics. We are going to show
you the various number types in Pascal, and how they can be used.

SESSION GOALS

You will learn about long integer and real numbers in addition to the type integer
that you have already used. You will discover the largest values that integer and long
integer variables can have, and the largest and smallest non-zero values the real
variables can have. You will use the arithmetic operators and discover the order in
which these operations are performed. You will explore an important user trap in
computer arithmetic, in which one plus one isn't always two. You will use an
assortment of numeric functions. Finally you will study the connections between the
different number types.

10-1 HOW BIG AND HOW SMALL?

The Apple, like any computing device has both a largest and smallest number
that it can handle. Moreover, the situation is a bit more complicated in Pascal since
there are three kinds of numbers available. It is important that you be aware that
these largest and smallest values exist. Otherwise, you may stumble into very
surprising user problems.

209

210 APPLE PASCAL

Let's work first with numbers of type integer since you have already used them in
programs. Boot up Pascal, clear out the workfile, set the date, and enter the
following program:

X i INTEGER$
NKEY © CHARS

BEGIN
X = 1%
 REPEAT -
. X = X X 29
WRITELN (X)§
READ (INKEY)
UNTIL INKEY = ‘Q‘
END. .

The asterisk in the first line of the REPEAT statement means multiplication. The
interesting part of the program takes place in this REPEAT loop. Each time the
computer goes through the loop, the value of X gets multiplied by 2, and the result is
assigned back to X. The new value is displayed on the screen. The main purpose of
the READ statement is to halt the display so you can watch what is taking place. As
the program stands, it will loop through this block until you type a Q.

Leave the EDITOR and run the program. Press the spacebar three times. Now
you should see the numbers 2, 4, 8, and 16 displayed in a vertical column on the
screen. Each time you press the spacebar, you will see two times the value of X that
appeared previously on the screen. Keep pressing the spacebar until you see
something interesting happen.

When X reached 16384, something interesting certainly happened. Instead of the
32768 which should have been the next number, you got -32768, and after thatonly
zeros. What happened between 16384 and 327687 The answer is that there is a
largest integer that the Apple can handle in Pascal, and it lies between these two
numbers.

It turns out that Pascal has a name for this /argest integer. It is called MAXINT and
is a predefined constant. On the Apple, MAXINT has the value 32767. You don't have
to remember the value 32767 when writing Apple Pascal programs. You can simply
use the MAXINT and the Apple will putin the correct value. A big caution flag should
go up here. On other computers MAXINT may have different values. This is one of
the details you should check when writing Pascal programs for other systems.

If you lose sight of the fact that integer values in Apple Pascal should not exceed
32767, you can fall into a user trap that would be almostimpossible to troubleshoot.
Notice what happened when program SIZE pushed the value of X past MAXINT. The
WRITELN procedure generated a surprising value of -32768, and then nothing but
zeros. When this happened, you could continue to run the program by pressing the
spacebar, and there was no error message. There is nothing to prevent you from

NUMBER TYPES AND ARITHMETIC 211

writing a program that will routinely generate integer values greater than MAXINT. If
this happens, the integer will take on unexpected values. Needless to say, you would
have a very confusing time trying to explain what happened.

This is a very malignant type of program bug. The program runs and produces
correct results some of the time, and nonsense some of the time. It is far easier to
find a bug in a program that doesn’t work at all, than in one that works part of the
time.

At any rate, to be forewarned is to be forearmed. If you declare a variable as type
integer, the largest value it can accurately take on is MAXINT, which on the Apple |l
has the value 32767. If the program tries to push the value past this point, it will be
incorrect.

You are probably wondering why MAXINT is 32767 rather than, for example
99999. The reason is that variables of type INTEGER are represented internally as
binary -numbers with digits zero and one, and not as decimal numbers. The biggest
positive binary number allowed is 111111111111111 which is the decimal number
32767.

Let's make a small change in your program and check out negative numbers.
Press the Q key to end the program run. Go to the EDITOR and change the first
assignment line to

XnE =10

Run the program as before and look for the largest negative integer.

There is some asymmetry here. The first troublesome positive integer is 32768,
but -32768 is a perfectly acceptable negative integer. More experimentation would
prove that -32769 cannot be represented correctly as an integer, however.

The valid range of integers on the Apple Il
implementation of Pascal is -32768 through
32767.

Press the Q key to end the program. Go to the EDITOR and change the
declaration of variable X to

VAR
X ¢ INTEGER L2413

Also change the assignment line back to

212 APPLE PASCAL

You need square brackets to modify the INTEGER declaration for X. As you may
recall from Session 9, you can produce a [character by typing CTRL-K, and the
with SHIFT-M. You might consider marking this fact on pieces of paper and gluing
them to the keytops if you haven't already done so.

Once the difficulty of the missing characters is solved, it doesn’t seem as though
anything drastic has happened to your program. What is the purpose of the square
brackets, and what does the 24 signify?

Leave the EDITOR and run the program. Press the spacebar 14 times. The last
two numbers on the screen are 16384 and 32768. Wasn't MAXINT supposed to be
327677 This time, the computer went right on past MAXINT with no difficulty.

Keep pressing the spacebar until pressing it further causes no change on the
screen. When this happens you will see the number

604462909807314587353088

on the screen. Apart from being a very large number, what is its significance? The
significance lies not in this number, but the next number that should come up on the
screen. Multiply the number above by 2 (remember, that is what is happening in the
program) and the result is

1208925819614629174706176

Count the number of digits in the two numbers. The first has 24, and the second 25.
Remember the [24] that you added to the declaration of the integer X in the VAR
block? Now it should be clear what this did. It created a new type of integer called a
long integer that can be larger than MAXINT. In the present example, the maximum
length of the long integer as set out in the VAR block is 24 decimal digits.

Now it's clear why the computer refused to display the second number above. It
was too long. Notice something else. Try to press any of the keys except RESET.
Well folks, your system has just died a horrible death! The ball game is over as far as
this programis concerned. You have only one way out. Turn the power off, insert the
APPLES: diskette and reboot the system.

When the system tried to exceed the maximum length of the long integer X,
strange things happened and the system died. The only safe thing to do at this point
is to turn the power off and boot up Pascal from scratch as you did above. Not even
CTRL-SHIFT-P will work here.

Now let's tidy up some loose ends about the long integers. You declared X tobe a

long integer of maximum length 24 decimal digits. In the present case, the range of X
is

=999999999999999999999999

through

PI9999999999999999999999

NUMBER TYPES AND ARITHMETIC 213

(The negative sign does not count as a digit.) As all these 9's may have suggested,
long integers are represented internally as decimal rather than binary digits.

In Apple Pascal, you can extend the range of long integers to a maximum of 36
digits. If you leave off the square brackets containing the maximum number of
digits, the type changes to ordinary integers with a range from -32768 to 32767.
These two types of integers are different from one another.

When using long integers you must be very careful not to exceed the maximum
length. If you do, your system will die the horrible death witnessed above. You
probably are wondering why anyone would ever need long integers having alength
of 36 digits anyway; we'll return to that question later in this session.

Incidentally, you should make note of the fact that the WRITELN procedure (and
also WRITE, READLN, and READ) accept parameters of type long integer.

Let's investigate a third type of number. Go to the EDITOR and change the
declaration of X in program SIZE so that the VAR block reads

Again, this seems like asmall change, butitintroduces anew type of number. Now X
is of type REAL. Do you have any ideas about what a real number is? Aren’t all
numbers real? Mathematicians make a sharp distinction between real and integer
numbers. We can see some of the characteristics of this distinction by trying out the
program.

Run the program but don’t press the spacebar quite yet. The first number on the
screen is a two, but it looks different from the twos you have seen so far. This is the
first major difference between integer and real numbers. The WRITEand WRITELN
procedures will accept values of type REAL, but they always output a decimal point
in them, even when the value is a whole number.

Press the spacebar 3 times. Here is the second surprise with real numbers. What
does 1.60000E1 mean? You probably were expecting the number sixteen, and that's
really what you got; however it is displayed in a new way. The E1 means that the
decimal point belongs one place to the right of its present position, so, the number
displayed is really 16.0000. The E notation is called power of ten or scientific
notation. The number following E is the exponent of ten.)

All right, go on pressing the spacebar until the program halts. You may find it
comfortable to hold down the REPT (which stands for REPEAT) key and spacebar at
the same time. You will have to press the spacebar many times, so be patient.

When the computer stopped, the last part of the display was

8.50706E37
1.70141E38

FLOATING FOINT ERROR
S# 1y F# 1y 1% 16
FRESS RESET

214 APPLE PASCAL

Clearly, you have asked the computer to go beyond its upper limit for real numbers
Based on the information above, you know that the maximum value for a reai
qumber must be greater than 1.70141 with the decimal point moved 38 places to the
right. In fact, the maximum real value is about twice that number: 3.402823E38, or

340,283,200,000,000,000,000,000,000,000,000,000,000.

which, by any standards, is an awfully large number. (If you are i i
sort of thing, it's 340.2832 billion billion bgillion biI|ion(.) you arempressed by (his

. T.h'e last thing to note about real numbers is that the computer displays only 6
s!gn!f!cant digits. In that big number above, only approximately the first 7 digits have
significance. The rest of the zeros serve only to indicate where the decimal point
belongs. Thisis in sharp contrast to long integers where the computer keeps track of
all the digits involved.

Do not follow the instructions on the screen. Instead, remove APPLEO: from the
drive. Replace it with APPLE3: and then press RESET to start a “cold” bootup. As
you can see, the system was re-initialized. The problem is this: the next number
would have been greater than the maximum value of real numbers in Apple Pascal
What value should the program assign to X? The Apple decides to give up. (Somé
computer languages will warn you that a potential problem exists, assign the
maximum real value, and continue.)

In the case of real numbers, you can also find out what the smallest positive real
number is. Modify the REPEAT statement to appear as follows:

REP
T
WRITELN (X)#
READ (INKEY)

UNTIL INREY = ‘Q

X /2 means to divide 2 into the value of X. Now instea i
the RETURN key, it will decrease in size. Run the prog?a(::\?(growmg Teyonpress

The first number out is 5.00000E-1. Well, 1 divided by 2 is 0.5 and if you move the
decimal point one place to the /eft, you do have 0.500000. Keep pressing the
spacebar until the computer stops.

The last number displayed is 1.17549E-38 which means 1.17549 with the decimal

point moved 38 places to the left. The smallest legal positive number in Apple Pascal
is

0.000000000000000000000000000000000000001 175495

and is, as you can plainly see, a very small number. The same error message
surfaced again because the next number that should be assigned to X is outside the
bounds of real numbers on the Apple. (Again, some languages will simply set the

gzsultlequal to zero and go on.) As before, insert APPLE3: and do a cold reboot of
ascal.

NUMBER TYPES AND ARITHMETIC 215

Real numbers may be negative as well as positive. The absolute values of
negative real numbers must lie in the same range as positive real numbers.

There are two important things to remember about real numbers. First, unless
you get involved in scientific calculations, you will usually have little need to use
them. Second, even if you do, the odds of generating numbers outside the range of
reals is small.

Of course, the main use of real numbers is to represent numbers that have a
fractional part. They are the natural choice in some situations. One quite typical
exception is financial calculations involving dollars and cents. The problem with
using real numbers here is that they give you only about 6 or 7 significant figures;
that will introduce rounding errors for numbers such as 112000.81. A better
approach is to make your basic financial unit the penny and then use long integers
with enough digits to handle your biggest number.

10-2 THE UNINITIALIZED-VARIABLE BUG

One of the commonest and subtlest bugs in programming is forgetting to assign
a value to a variable and then using that variable in some expression in your
program. Let's see what happens when you deliberately introduce this bug into the
current version of program SIZE. Delete the first assignment statement, X := 1, and
replace it with WRITELN (X). Run the altered version.

Note first of all that the compiler does not report an error, even though your
program never assigned a starting value of X. The very first statement attempts to
write the value of X on the screen. Then the first statement inside the REPEAT loop
takes the initial value of X (whatever that is), divides it by 2, and assigns the result
back to X. The next statement writes the new value of X on the screen.

When you ran the program you saw that the computer was undaunted by the fact
that you never initialized the value of X. The computer somehow generated its own
strange starting value for X, wrote the value on the screen, and then proceeded to
divide it by 2 (correctly) and write the new value on the screen. Your program made
an error, but the computer failed to detect it and instead went ahead computing
incorrect results. This category of unreported bug is especially pernicious.

You should not get the idea that uninitialized variables will always start out with
the same predictable value, such as zero for numeric variables. Remember that a
variable is just a place in the computer’'s memory. When you declare avariablein a
VAR block, the Pascal compiler decides what physical memory location to use for
that variable. But it does not do anything to the data already there. Whatever
“garbage” happens to be there becomes the initial value of that variable on that
particular run of the program. A different run might find different “garbage” in the
same memory cells.

216 APPLE PASCAL

The only way to avoid this bug is by a careful
reading of your program. For every variable
that you declare there must be a statement
somewhere that defines its value before
executing any other statement that makes use
of the value.

Type Q and exit your program.

10-3 ARITHMETIC WITH INTEGERS

In this section, the main topic will be the arithmetic operations of type integer
that are available in Pascal, and the rules for the order in which various operations
are done. First, let's be certain about what is meant by an integer. Stated in the
simplest terms, an integer is just a whole number. This includes the positive
counting numbers 1, 2, 3,4, ..., the negative of the counting numbers -1,-2, -3, -4, ...,
and a very special whole number, 0. Notice that if you add two whole numbers
together you always get a whole number. The same is true for subtraction and
multiplication. Consequently, you can perform addition, subtraction, and multipli-
cation with integers and get integers; you do not getanother number type as a result
of the computation. Division is another matter. If you divide the integer 3 by the
integer 2, the result is the real number 1.5. Therefore, if you are working with
numbers of type integer and want to do division, you have to have special operators.

Remember that A DIV B is the whole number part of the quotient of A divided by
B. On the other hand, A MOD B is the remainder of A divided by B. You have used
these rules in previous programs, but it's a good idea to review them here.

Clear out the workfile and enter the following program:

PROGRAM ORDER$
 WRITELN (20 DIV &)
END, . .

This is a very simple program whose sole purpose is to experiment with the order
of operations and the functions that are available in Pascal. You will make a number
of modifications to the numeric expression whose value is passed to the WRITELN
procedure.

The first experiment won’t be much of an experiment since you already know
what the answer should be. What is 20 DIV 6? Run the program. Of course, you got
the expected result of 3.

NUMBER TYPES AND ARITHMETIC 217

Change the WRITELN statement to read

WRI

What answer will be produced now? Run the program. You should have anticipated
the answer of 2, since 2 is the remainder of 17 divided by 5.
Next, change the line to

WRITELN (2 % 3 X 5)

There is some ambiguity here unless there are well defined rules for the qrder in
which the calculations are to be done. If addition is done first, the answer is 25. If
multiplication is done first, the answer is 17. .

Well, you can easily find out which way it is. Run the program. ,The result'glves
you a valuable piece of information to file away for reference. (We.II summarize gll
the rules at the end of this section, so you don’t have to write anything down at this
point.) -

Just to test the idea that multiplication is always done before addition and to see
whether the order of the terms makes a difference, change the WRITELN statement
again as follows:

WRITELN (2% 3 %8, 3 %k 0 & 20

This gives you the answer, but the output formatis rather cramped. The resulton
your screen looks like this:

1717

You have to read this as “seventeen, seventeen,” and it confirms the idea that
multiplication is done ahead of addition, no matter what' t.he order of the terms. We
say that multiplication has a “higher priority” than addition. .

Now let's try to improve the output format. Change the WRITELN call again as
follows:

WRITELN (2 A 3k St ey ax s+ 21 6)

Now run the program. Note here that the two seventeen_s are'each Iocatgd ina fie{d
that is six characters wide, and that they appear on the right side of that field. That s
the effect of “: 6” after any parameter in a WRITE or WRITELN call. (Other numbers
could be used in place of 6.)

218 APPLE PASCAL

Now let's see what happens in an expression that contains multiplication and
subtraction. Change the WRITELN call as follows and rerun.

This result confirms that multiplication has a higher priority than subtraction as well
as addition.

What about expressions that contain both addition and subtraction? What is the
order of carrying out these two operations? Change WRITELN again as follows:

Notice that if addition is done first, the result will be

But if subtraction is done first, the result will be

Run the program and see.

This test is inconclusive about the first expression (2 + 3 - 5), since your zero
result would occur regardless of whether the addition or the subtraction was done
first. But the second result shows that subtraction in the second expression was
done before the addition. Let’s clear this ambiguity up.

Change the WRITELN again as follows:

URETELN (9 = 3 - 2 & &)

If the subtraction on the leftis done first, the result will be 4; but if the one on the right
is done first, the result will be 8. Run the program and find out.

The easiest way to summarize all this is to say that multiplication takes place
before addition or subtraction, and that additions and subtractions are done from
left to right. Read over the previous results and make sure that you can explain
everything you have seen according to this rule.

NUMBER TYPES AND ARITHMETIC 219

Now let’s find out where DIV and MOD fit into this scheme. Change the WRITELN
parameter again to this:

Using the fact that 3DIV5=0,5DIV5=1,and 3DIV7 =0, you should be able to verify
the following possible results before running:

1 0 if +is first
2 2 if DIV is first
1 2 if the order is left-right

Run the test program and find out.

This result suggests that DIV is like * : both operations are carried out before + or
-. Indeed, thatis the case in Pascal. You probably guessed that MOD is like DIV and *
also, and that is also true, though we will not investigate it experimentally now.
Instead, let's see what can be done to break the rules of order.

Consider the following version:

WRITELN (5 DIV 2 % 3 X 4)

Again, it makes a difference in what order the calculations are done. From whatyou
saw in the previous example, you can safely conclude that the result willbe 2+ 12, or
14.

Don’t bother to run that. Instead, change the WRITELN call to read

WRITELN (5 DIV 2 + 3 % 4 ¢! 6y (5 DIV 2 + 3) X 4. &)

Run it. Notice that the arithmetic inside the parentheses is done before the result (5)
is multiplied by 4.
Let’s try a harder one. Change the WRITELN call as follows:

WRITELN ¢((2 % 3 MOD 2) X% (2 +# 3 % 2)) % 2)

In the leftmost inner parentheses you can see that it makes a great difference
whether the multiplication or MOD is done first. If the multiplication is done first, the
result of the expression in parentheses is 6 MOD 2 or 0. If the MOD operation isdone
first, the resultis 2 * 1 or 2. You should have gathered from the last few experiments

220 APPLE PASCAL

that division and multiplication are done at the same level of priority. In this
expression we have two operations of the same priority. Now it becomes important
to know in which direction the computer scans the expression. Run the program.
Inspect the answer and work backwards to discover whether the computer scanned
the first nested set of parentheses from left to right, or right to left. Well, what did you
find out?

In a few moments we'll return to the question of order and scanning direction of
arithmetic expressions, but now let's look at some of the built-in numeric functions
that are available in Pascal.

Change the WRITELN statement in program ORDER to read

WRITELN (ABS (38))

and run the program. Nothing much seemed to happen to the 38, right? Change the
parameter of the ABS function to -251 and run the program again. What happened
this time? ABS evidently takes the size of the number and ignores the sign. ABS(-5)
is 5, ABS(14) is 14, and so on.

We'll make an important point here and will return toiit later. Your parameters for
ABS were of type integer, and ABS returned an integer value. (How could you tell?)
In the section after next, you will try to use a real argument for ABS. What do you
suppose will be returned in that case?

The last function to experiment with in this section is SQR. Modify the WRITELN
statement to read as follows:

WRITELN (8GR (5))

Run the program. What is the relationship of the answer to 5? Do you know yet what
SQR does?

Change the argument of SQR to -6 and run again. Okay, now you should have
the purpose of SQR nailed down. If not, experiment some more until you are sure.

Let’s sum up what you should have learned.
There are three familiar arithmetic operations
on integers in Pascal. They are addition (+),
subtraction (-), and multiplication (*). There
are two types of division; MOD and DIV. The
computer scans arithmetic expressions from
left to right until the innermost set of paren-
theses is located. Then, the operations inside
are done according to priority rules, again
scanning from left to right. The operations with
the highest priority are division and multiplica-
tion. Then addition and subtraction are done.

NUMBER TYPES AND ARITHMETIC 221

There is a good rule of thumb to keep in mind. If there can possibly be any
confusion about the order in which operations are to be done, use extra parenthe§es
to make it clear. Too many parentheses rarely cause trouble, but too few certainly
can.

10-4 ARITHMETIC WITH LONG INTEGERS

Why long integers anyway? As we said earlier, they are usually needed for
financial calculations. As you will discover in this session, calculations with real
numbers usually produce approximations of the correct answer. The approxima-
tions may be very good, but nevertheless, they are still only approximations. This
sort of thing makes bankers and auditors very nervous. However, calculations with
integers are exact.

The best way to approach financial calculations is to let integers represent the
number of pennies in the transaction. It's clear that data of type INTEGER won't be
of much value unless you have a very small company. Remember that MAXINT has
the value 32767. If this is the number of pennies, then none of the calculations could
amount to more than $327.67.

On the other hand, long integers can be specified to have lengths up to 36 digits.
The maximum financial amount that could be handled with long integers is
therefore

$9,999,999,999,999,999,999,999,999,999,999,999.99

This is big enough even for government calculations. The long integers can be sized
to any type of financial calculation you wish.

Let’s return to the question of arithmetic, this time with long integers. Modify
program ORDER so it appears as follows:

”:'ORI'ER) 5

114
2220

Can you add long integers together? Run the program and find out. The answer
should convince you that you can. It is also true that subtraction can be done with
long integers.

Change the last two lines of the BEGIN/END block to read

222 APPLE PASCAL

Well, what about multiplication? Run the program. No problem yet. Addition,
subtraction, and multiplication are all permitted with long integers.

There is only one basic arithmetic operation left. Change the last two lines as
follows:

YRR e
WRITELN (X DIV Y)

If the DIV operation is permitted, you should get 1111111111 as an answer. (There
are ten 1s in this number) Run the program. What's the answer; is DIV permitted?

The next obvious operation to try is the MOD type of division. Modify the
WRITELN statement to read

WRITELN (X MOD Y)

If MOD is permitted, then the answer ought to be 11. (Do you see why?) If not, then an
error message should probably show up.

Run the program. Error 134 seems ominous. Press E to see what the erroris. The
illegal operand message confirms our fears. Unfortunately, MOD is not permitted
with long integers. Press the spacebar to get back to the EDITOR.

Addition, subtraction, multiplication, and the DIV form of division can be done
with long integers. The MOD form of division is not permitted. The same priority
rules you discovered for these operators when using integers also apply when using
long integers. Remember that you can pick any length of long integers up to 36. Be
careful that your calculations don’t wind up with a number longer than the maximum
size of the long integers. If you do, your system will die the horrible death you saw
earlier. Note also that ABS and SQR do not work with long integers.

10-5 ARITHMETIC WITH REAL NUMBERS

Now let's turn our attention to arithmetic involving real numbers. Change
program ORDER until it appears as follows:

PROGRAM ORDERG#

VAR
X» ¥ 1 REALG

BEGIN
X $= 4,256%
Y i= L1724
WRITELN X ¢ ¥
END.

NUMBER TYPES AND ARITHMETIC 223

The two variables X, and Y have been declared to be of type real, and are
assigned real values in the assignment statement. The arithmetic seems perfectly
clear. Run the program. What happened?

Judging by the position of the cursor, the problem seems to lie in the definition of
Y. Press E to move into the EDITOR where you can read the error message. The
message ERROR IN < FACTOR > seems rather cryptic. Well, the problem is in the
way you “spelled” the constant in the text of that assignment statement. First, al/ real
numbers must be written with a decimal point in them. If you were considering the
number four as a real number it would have to be written as 4.0 with a decimal point
and a zero appended. If there is no digit before the decimal point or after it, you must
insert a O there.

Change .172 to 0.172 in the assignment statement for Y and run the program
again.

This time the program ran with no difficulties. You probably expected to get an
answer of 4.428, but you got 4.42800 instead. This is one of the characteristics of
arithmetic with real numbers. They are represented internally with an accuracy of
about 7 decimal digits. The 7th digitis rounded off and six digits are displayed in any
real result output by the WRITE or WRITELN procedure. |f necessary, zeros are
added to the end of the number, as happened in this example, to fill out the result to
six digits.

Change the WRITELN statement to read

URITEEN (X = YD)

and run the program. There were no surprises this time, and you got the expected
answer of 4.08400.

Change the - to * in the WRITELN statement and check out multiplication. Did
everything work out out as expected? The only difference was in the way the answer
was displayed. Of course, 7.32032E-1 is the way the computer represents 0.732032.

There is one last arithmetic operator to check out. Change the WRITELN call
statement to

WRITELN (X / Y)

and run the program. You saw earlier that / is the operator for division of real
numbers. The answer is 2.47442E1 which is the computer representation of 24.7442.
There are few surprises in arithmetic with real numbers. You haven’t looked at
the order of operations with real numbers, but you don't have to; the order is
precisely the same as for integer and long integer arithmetic. Division and
multiplication have priority over addition and subtraction. The computer scans
expressions from left to right, and works from the deepest set of parentheses out.
You have already learned that the ABS function returns a value equal to the
parameter, but always with a positive sign. You saw that ABS (-3) = 3. If the
parameter of the ABS function is an integer, so is the value of the function.

224 APPLE PASCAL

Let’s check this out with real numbers. Modify the BEGIN/END block of program
ORDER to read:

BEGIN

END.

Theanswer of 4.25600 indicates a real result. ABS is a curious function because it
can be passed either a real or an integer parameter. The type of the value of the
function is determined by the type of the parameter. If the parameter is real, the
value of ABS is real; if the parameter is integer, the value of ABS is integer.
(Incidentally, Pascal doesn’t give you a way to define a function of your own with this
adaptive property.)

Change ABS to SQR and run the program. What happened? It seems clear that
SQR has the same adaptive characteristic as ABS. The type of the value of either
ABS or SQR is the same as that of the parameter of the function.

The next two functions to experiment with are TRUNC and ROUND. Modify
program ORDER so that it appears as follows:

PROGRAM ORDER#

VAR
X ¢ REAL}

BEGIN
X 3= 4,256%

WRITELN (TRUNC (X) : 10s ROUND (X) & 10)
END.

Run the program. What do TRUNC and ROUND do? The result of 4 (without the
decimal point and trailing zeros) indicates that these functions return an integer.
Both of them seem to throw away the fractional part of the real number. In the
present case, with X = 4.256, both functions returned a value of 4.

Change the assignment line to the following

4.8563

and run again. For this value of X, TRUNC and ROUND returned different integers.
Experiment with other positive numbers in the assignment statement.

Now let's check out the negative cases. Change the assignment line to the
following

NUMBER TYPES AND ARITHMETIC 225

and run the program. Next, try

and run again. These experiments should give you a clear idea of how TRUNC and
ROUND work.

For any real parameter X, ROUND returns
the integer nearest to X. If Xis positive, TRUNC
returns the nearest integer that is less than or
equal to X. If X is negative, TRUNC returns the
nearest integer that is greater than (i.e. more
positive than) or equal to X.

Thus, ROUND “rounds off’ real numbers to the nearest integer, while TRUNC
“truncates” (chops off) the fractional part of real numbers and returns just the
integer part. The following facts may be useful in helping you to understand the
connection between these functions:

If X >= 0 then ROUND (X) = TRUNC (X + 0.5)
If X < 0 then ROUND (X) = TRUNC (X - 0.5)

An important use of the TRUNC function is to convert a value of either ty‘pe real
or type long-integer to a value of type integer. Of course, the real or long-integer
value has to be within the standard range (-32768 through 32767) of integer values.
We will return to this use of TRUNC later in this session.

Let’s turn to a different function. Modify your program to appear as follows:

PROGRAM ORLDER?

VAR
EGER#

226 APPLE PASCAL

X, which is of type integer is assigned the value 4. The new function is
PWROFTEN. PWROFTEN rather sounds like “power of ten”, doesn’t it? Run the
program. What was printed out? PWROFTEN does indeed compute a power of ten
and returns the result as a real number. The parameter of PWROFTEN must be an
integer value, and the value of the function is a real number. Negative parameter
values are illegal and will cause the system to die.

10-6 SOME MATHEMATICAL FUNCTIONS

If you are familiar with functions such as the square root, sine, cosine, and
logarithms, you'll probably be interested in this section, and should read on. If not,
skip to the next section.

Apple Pascal includes a package of mathematical functions in a special unit
called TRANSCEND. If you wish to use any of the functions, you must include
TRANSCEND in a USES declaration block, just as you did with TURTLEGRAPHICS
and APPLESTUFF. TRANSCEND is the third and last of these special units supplied
with Apple Pascal and saved in the file SYSTEM.LIBRARY on APPLEOQ:.

The functions are these: SQRT, SIN, COS, EXP, ATAN, LN, and LOG. Let's look
briefly at each of these.

SQRT (X) returns the square root of X. Both X and SQRT (X) are real. The only
restriction is that you can't take the square root of a negative number.

SIN (X) takes the sine of the real parameter X. X is assumed to be in radians. The
value of SIN (X) is also real. COS (X) has the same characteristics except that the
cosine of X is returned. There is no tangent function defined in TRANSCEND. You
can compute it easily, though, by evaluating SIN (X) divided by COS (X).

ATAN (X) returns the arctangent of X. X is a real number, and ATAN (X) is also
real and is expressed in radians.

EXP (X) returns a real value equal to e (the base of the natural logarithms) raised
to the power X. Both X and the value returned by EXP (X) are real.

LN (X) takes the natural logarithm of X. Both X and LN (X) are real, and X must be
a positive number. LN is the inverse of EXP.

There is no exponential operator in Pascal. You can’t, for example, raise X to the
Yth power where X and Y are real numbers, or even when Y is a simple integer. At
least, you can’t do it directly. You can, however, compute it using the EXP and LN
operators. To compute X to the Yth power, use the following recipe:

EXF (Y % LN (X))

LOG (X) returns the logarithm of X to the base ten. Both X and LOG (X) are real.
Note that PWROFTEN can have only integer values, so it is not a proper inverse of
the LOG function.

The discussion of these mathematical functions has deliberately been kept brief.
If you understand what we've been talking about, then the description should
suffice. If not, then far too many pages would be needed to lay out the details.

NUMBER TYPES AND ARITHMETIC 227

10-7 AN APPLICATION OF REAL NUMBERS

If you exclude scientific calculations, most routine problems can be handled
quite well with integers. On the other hand, the following problem is one that does
require real numbers: the problem of computing the average of a set of numbers. We
start by generating a set of random integers from 0 to 10 inclusive, using the
RANDOM function. Then we compute their average, which will be real.

Clear out the workfile and enter the following program:

There are some details about the program that are worth discussing. First, SUM
(which will be used to accumulate the sum of the random numbers) is declared to be
real. If SUM had been declared an integer, and HOWMANY (the number of random
numbers to be generated) was large enough, it is possible that SUM would have
been greater than MAXINT which would then set SUM equal to incorrect values.
With SUM declared to be real, the difficulty is avoided.

Another item you may have spotted is that AVERAGE (a real value) is assigned
the quotient of SUM (a real) and HOWMANY (an integer). This looks like a 'gype
conflict, but isn’t. This whole issue will be discussed thoroughly later in this session.

The random numbers are generated by RANDOM MOD 11. You have used the
RANDOM function many times before. This expression will generate integers at
random from the set 0, 1, 2, ..., 9, and 10. If you average a large number of these
random numbers, what should you get? If you said 5, then you are right. However, it
won’t usually be exactly 5 will it? Also, as the number of random numbers generated
increases, shouldn't the average get closer to 57

Run the program and answer the prompt with a 10. Run the program several more
times keeping HOWMANY at 10. Did you get the same average each time?

Run the program several more times, this time using an input value of 100. Are the
results grouped closer about 57

228 APPLE PASCAL

Finally, try it again, but this time run the program several times with a value of
1000. How do the results check out this time?

It should be clear that as the number of random numbers in the average
increases, the average gets closer to 5. This program in addition to revealing some
facts about statistics, also illustrates a case where real numbers are required.

10-8 ONE PLUS ONE ISN'T ALWAYS TWO

The introduction of the real data type brings with it a lot of advantages, but also
one or two user traps. If you fall into one of these traps with your eyes open, perhaps
you won'’t have as much trouble recognizing it in the future.

Clear out the workfile and type in the following program:

PROGRAM TEST#

VAR
X ¢ REAL?{
I ¢ INIEGER)
BEGIN
X = 03
FOR I := 1 10 5 PO
X 1= X | 0.3
IF X = 1 THEN
WRIFEIN ¢ RIOHT)
ELSE
WRITELN (‘WRONG’)
END.

Look over the program. There certainly is nothing complicated or involved here.
As you can see, 0.2 is to be summed five times and the resultis then tested against 1.
But we all know that if you begin with zero, and add 0.2 five times, the result is always
1, so what is the big message? If Xis equal to 1 after the summation, then RIGHT will
be printed out; otherwise, WRONG will be printed. Run the program. What
happened?

Not too surprising, right? Well, let's make a couple of simple changes. Change
the FOR statement to read

and run the program. Whoops! What is wrong? Surely, if you begin with zero and add
0.1 ten times, the result is 1. We can check on this by writing the value of X at the
same time RIGHT or WRONG is printed out. Change the IF statement to read

NUMBER TYPES AND ARITHMETIC 229

IF X = 1 THEN
WRITELN (/RIGHT, X = “r X}
ELSE
WRITELN (’WRONGy X = 7y X)

The results certainly cry out for explanation. The reported value of X is 1.00000,
and still X was not equal to 1 in the IF THEN statement, as shown by the WRONG
message.

Let’s try one more experiment. Change the IF statement to read

IF X = 1 THEN

WRITELN ('RIGHTY X -~ 1 = 'v X = D)
ELSE
WRITELN (‘WRONGy X = 1 = 72 X =~ 1)

and run the program.

Well, now it's clear what is happening. When you wrote out the value of X after the
summation, its value appeared to be 1. However, when you subtracted 1 from X, the
result was not 0, but instead was 1.19209E-7. Well then, X must have had the
approximate value 1.0000001. This is close to 1, but it isn’t equal to 1 exactly. If you
ask that X be printed out, it will appear as 1.00000 since only six digits are displayed
by the WRITELN procedure. The test IF X = 1 THEN is testing to see if X is exactly
equal to 1, and it isn't.

You can experiment some more with this program to see where the errors occur.
Some tests to try out are these: sum 0.05 twenty times, .02 fifty times, or 0.01 one
hundred times.

There are two sources of error that can contribute to the problem. First, the
computer represents real numbers internally with only a finite number of significant
digits. If you try to express one-third on paper as a real number you would probably
write something like .333333. Actually, there should be an infinite number of 3s after
the decimal point to represent one third exactly. Furthermore, the sum .333333 +
.333333 +.333333 is equal to .999999, not one. The computer has the same problem
that you have in handling fractions with digits that repeat forever, except that the
problem comes up in surprising ways. Real numbers, like integers, are represented
as sequences of binary digits (0 and 1) rather than the decimal digits (0 through 9). It
just so happens that the decimal number 0.1 looks like this as a binary number:

0.000110011001100...

It is a repeating binary fraction. Since the computer has room for only 23 binary
digits of precision, it cannot represent one-tenth exactly.

The moral of this exercise is that whenever you do calculations with real numbers
on any computer, you should keep in mind the fact that cumulative errors are
inevitable and in some cases may be important. The only exact numbers are integers
and long integers.

230 APPLE PASCAL

10-9 INTERACTIONS BETWEEN NUMERIC TYPES

You've worked with three different types of numbers now: integer, long integer,
andreal. As you might suppose, there are times when the computer will convert from
one type to another without problem, and other times when the computer will
complain if asked to convert. A simple program will let you see which conversions
are automatic.

Clear out the workfile and type in the following program:

PROGRAM CONFLICTS$

VAR .
11 12 : INTEGERS
Lily L2 3 INTEGER L123%
Ris R2 ¢ REALE =
BEGIN
I1 = 12345%
Ll 3= 12345%
R1 $= 12345,0%
12 &= L1}
I2 = Rij
L2 3= 11}
L2 3= R1%
R2 1= I1%
RZ 3= Li
END.

The point of this program is to find out about possible type conflicts that may
arise in the last six statements. Each of the six statements has a variable on the left
side that is of a different type than the value on the right side of the assignment
operator.

Run this program. When you get the first compiler error, note carefully which
statement the cursor is pointing at. Do not type E. Instead, press the spacebar and
go on to the next compiler error. Note down the offending statement. Continue the
process until there are no further errors. Then go back to the EDITOR.

This experiment shows that four of your six statements did indeed lead to a type
conflict error. Note that in the two statements that were legal, there were integer
values on the right side of the assignments. Integer values may be assigned to real
and long integer variables.)

Change the four statements that caused errors so that they look like this:

12 s~ TRUNC (L1139
E2 3= TRUNC (K1)
L2 = T1%
L2 i= TRUNC (R1)3$
R2 t= T1%
R2 t= TRUNC (L1}

NUMBER TYPES AND ARITHMETIC 231

Run the result. This time you should have gotten no compiler errors. As we said
earlier, you can use the TRUNC function to convert real numbers and long integers
to ordinary integers. Thus, the right sides of all six statements are now of type
integer, which you can freely assign to any numeric variable of whatever type.

Pascal, as you have seen is very forgiving about the use of integer values in
places where real or long integer values are expected. Pascal simply promotes the
integers up to the proper type so as to avoid type conflict errors. This happens not
only in assignment statements but also in numeric expressions that mix integers
with another numeric type. The following rules sumarize the situation:

It is legal for integers to appear anywhere
that a real number or long integer is legal.

If integers appear in expressions that
contain reals, then integers are automatically
promoted to reals and the result of the
expression is real.

If integers appear in expressions that
contain long integers, then integers are auto-
matically promoted to long integers and the
result of the expression is long integer.

Itis illegal to mix long integers and reals in
the same expression or to use a long integer
where a real number or an integer is expected.

Notice the assymetry between the way numbers and strings are handled in
Pascal. If it makes sense, integers are promoted to reals automatically without any
problems. In the same way, characters should be able to be promoted to type string.
However, you can’t concatenate characters to strings, as you saw in Session 9. This
is not sensible, and is one of the weak points of this implementation of strings in
Pascal.

We hope that the different number types and rules for conversion from one type
to another have not left you feeling confused. Frankly, the reason that the topic of
number types was delayed until relatively late in the book was to avoid the possibility
of confusion over minor points that really have very little to do with the language that
you are learning. As has already been pointed out, most calculations do quite well
with integer arithmetic. If you plan to do financial calculations, you will need long
integers. Unless you get involved in statistical or scientific calculations, you will
rarely need real numbers.

SUMMARY
Now let's summarize what has been covered in this session.

B You learned that there are three number types: integer, long integer, and real.

232 APPLE PASCAL

The largest integer is MAXINT which has the value 32767. The largest negative
integer is -32768.

Long integers can be up to 36 decimal digits long.

You saw that the largest absolute value of reals is about 3.40282E38. The
smallest non-zero absolute value is about 1.17549E-38.

Pascal scans expressions from left to right, doing the arithmetic in the deepest
set of parentheses first.

When doing arithmetic, multiplication and division (*, /, DIV and MOD) have
priority over addition and subtraction (+ and -).

You used +, -, and * to indicate addition, subtraction, and multiplication
respectively, for all numeric types.

Division of reals is indicated by /. Division of integers is done with either the DIV
or MOD operations.

Both DIV and MOD are permitted with integers, but only DIV is permitted with
long integers.

ABS (X) returns the absolute magnitude of X. X may be integer or real but not
long integer.

SQR (X) returns the square of X. X may be integer or real but not long integer.
For real X, TRUNC (X) converts the value to type integer and truncates the
decimal part of X. For long integer values of X, TRUNC (X) converts the value to

type integer so long as the result is within the legal range of integers.

For real X, ROUND (X) rounds off the number and returns the nearest integer
value.

Arithmetic with real numbers can sometimes produce errors due to conversion
from decimal to binary and the fact that reals can only be represented to about
seven significant decimal digits.

Integers are promoted to type long.integer in'assignment statements and in
expressions that contain long integers.

Integers are promoted to type real in assignment statements and in expressions
that contain real numbers.

Long integers cannot be mixed with reals in the same expression.

Table 10.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in boldface. (Code: a = declared in APPLESTUFF; g =

NUMBER TYPES AND ARITHMETIC 233

declared in TURTLEGRAPHICS; t = declared in TRANSCEND)

Reserved
Words

PROGRAM
USES
CONST
VAR
PROCEDURE
FUNCTION

BEGIN
FOR

TO
DOWNTO
DO
REPEAT
UNTIL
WHILE
IF
THEN
ELSE
CASE
OF
END

QOO OQQQ D D

Built-In
Procedures

DELETE
READ
READLN
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO
VIEWPORT

QUESTIONS AND PROBLEMS

Built-In
Functions

Boolean
a BUTTON
a KEYPRESS

Integer
LENGTH
POS
ROUND
TRUNC

a PADDLE

a RANDOM

Real
ABS
PWROFTEN
SQR
t ATAN
t COs
t EXP
t LN
t LOG
t SIN
t SQRT

String
CONCAT
COPY

Other
Built-Ins

Constants
FALSE
TRUE
MAXINT

g NONE

g WHITE

g BLACK

g GREEN

g VIOLET

g ORANGE

g BLUE

Types
BOOLEAN
CHAR
INTEGER
REAL
STRING

Units
APPLESTUFF
TRANSCEND
TURTLEGRAPHICS

1. What is the numeric result of each of the following operations?

a.25MOD 10 *3+5DIV 2

b.3+4*2MOD 3

Cc.((((2+3)*2)-2)DIV7)*5

d. ABS (-4.5) / ROUND (2.9) + 0.5

e. SQR (ABS (TRUNC (2 * 4.2 - 25)))

234 APPLE PASCAL NUMBER TYPES AND ARITHMETIC 235

2. Explain which numeric data types can be used with one anotherin an arithmetic
expression and which cannot. When two different numeric types appear
(legally) in an expression, what type does the result of the expression have?

b. X := TRUNC (1234567 DIV 1000)
c. X := TRUNC (1234567)

3. For each assignment statement below, tell whether it can be a legal Pascal d. X := TRUNC (1)
statement. If so, give all possible types that X can have in order to make the

statement legal. e. X := TRUNC (SQRT (2))

a X:=0 6. For each value of X given below, state whether TRUNC (X) = ROUND (X),
TRUNC (X) > ROUND (X), or TRUNC (X) < ROUND (X).
b. X :=137
a. 18.237
c. X := -87524936
b. 18.659
d. X := .5632
c.-18.13
e. X:=1.7E-4
d. -18.92
f. X := 4.3E39
(Hint: remember that “>” means “more positive than”.)
g. X := 32768
7. The three statements below are legal Pascal statements.
h. X := -32768
i. X :='32768 X = 1E10%
Y = X + 1%
IF Y = X THEN
4. Use the instructions stated in Question 3 for the following statements. ELgFéITE (’00FS!7)
a.X:=5DIV2 WRITE (‘OKAY’)
b. X:=5DIV 2.0 a. What data type(s) must X and Y be?
c.X=5/2 b. If the statements are executed in succession, what will be written on the
screen? Explain why?
d. X:=5/20

8. Assume that STR1, STR2, NUM1, and NUM2 have the values 'PRICE/,
"MARKUP’, 6.92, and 1.25 respectively. Explain precisely what screen display
will be produced by the following procedure call:

e. X := 555555 DIV 2

f. X := 555555 / 2

g X:=5+2

WRITELN (STR1 ¢ 10y NUML ¢ 10y STR2 ¢ 10y NUMZ2 ! 10)
h.X:=5+20

5. Use the instructions stated in Question 3 for the following statements:

a. X := TRUNC (1.3)

236 APPLE PASCAL

9. What will happen if the following program is run?
PROGRAM WHATEVERS$

CONST
NAMEL = ‘BOR‘#
NAMER = ‘SUE’}$

VAR
COUNT?! INTEGERS$

BEGIN
FOR COUNT = ¥ TO 12 DO
IF COUNT < & THEN
WRITELN (NAMEL ¢ COUNT)
ELSE
WRITELN (NAMEZ2 ¢ COUNT)
END.

10. Write a single program that computes:
a. The average of all the integers from one to 100,
b. The average of their squares,

c. The square root of the number equal to the average of their squares minus the
square of their averages.

1

S

. The Pythagorean formula
c2=a?+ b?

relates the lengths of the two perpendicular sides (a and b) of aright triangle to
the length of the longest side (c). Write a program that prompts the user to type
in the lengths of the two perpendicular sides, separated by aspace. The prcgram
should then accept the input and write out the length of the longest side.

12. The product of all the integers from one to N is called N factorial. Write a
program which will compute and write a neatly formatted table giving the exact
values for N and N factorial for values of N from one to 30 inclusive. (Caution:
you will have to use the “longest” long integers to hold N factorial.)

13. If N is an integer, 1/N is called its reciprocal. Write a program that outputs the
sum of the reciprocals of N for all integers in the range 1 to NUMBER, where the
user types the value of NUMBER when the program is run. Run it several times
and describe what happens when NUMBER gets bigger and bigger.

14. Write and run a program, along the lines of the one in question 13, that outputs
the sum of reciprocals of the squares of N. Describe the result for large NUMBER
values.

SESSION

ELEVEN

SCALAR DATA TYPES AND SETS

In previous sessions you have seen constants, variables, functions, and
expressions of a variety of distinct types. You have used integers, real numbers,
characters, strings, and boolean values in programs. You are probably beginning to
wonder how many more distinct data types there are in Pascal. The answer, as you
will soon see, is a very large number.

SESSION GOALS

In this session you will explore the scalar properties that make integers,
characters, and boolean values alike. You will define an entirely new scalar datatype
of yourown choosing, declare variables to be of the new type, and assign new values
to these variables. You will use three new built-in functions that work with any scalar
values, including ones that you invent. You will see that an entire set of scalar values
can be treated as a single piece of data and can be assigned to a variable of a new
type called SET. You will find that Pascal contains a facility for finding whether a

pqrticular scalar value is a member of a given set, and that it is possible to do
arithmetic with pairs of sets.

11-1 WHITE, ORANGE, BLUE: WHAT ARE THEY?

Un.Iess you were unusually alert, we slipped something past you that went
unnoticed back in Session 7 while you were learning about graphics. There is a
lesson in that, and we will explore it now.

Boot up, set the date, clear the workfile, and enter the following program.

PROGRAM LINES

237

238 APPLE PASCAL

Run the program. It draws a diagonal line from the middle of the screen (where
the turtle starts out) to the upper-right corner and then halts at the READLN call.
Press RETURN to end the program.

Do you see anything strange about this program? Something that needs further
explanation? Look at each word and ask yourself what itis. PROGRAM, for example
is a reserved word. LINE is a name that identifies the program. USES is another
reserved word. TURTLEGRAPHICS is the name of a set of programs stored as a
library unit. BEGIN is another reserved word. INITTURTLE is the name of a
procedure declared in the TURTLEGRAPHICS unit. PENCOLOR is the name of
another TURTLEGRAPHICS procedure. WHITE is...well it’s...it must be a...

What is WHITE anyway? Well, what things could it be? First, we note that WHITE
appears in this program as a parameter that is being passed to the PENCOLOR
procedure. That rules out the possibility of its being a reserved word, such as IF or
- FOR or WHILE or BEGIN, since reserved words never have values.

The things that have values in Pascal are variables, constants, and functions.
Perhaps WHITE is one of these things. If so, it would have to be declared in
TURTLEGRAPHICS, and its type and value would have to be established there also.
Following that trail a little farther, we naturally ask what the value and the type of
WHITE might be. And the natural answer is to experiment and see. For example, if
WHITE is an integer or a real number or a character or a string, then WRITELN
(WHITE) will tell us what its value is.

Insert a semicolon after READLN and then the following new line:

WRITELN (WHITE)

Run the new version.

Well, whatever WHITE is, it does not belong to one of these standard data types.
The error message makes that plain. WHITE seems to have a value, but it is not a
number, a character, or a string. Very mysterious.

Here's another approach. Does WHITE stand alone, or are there other words that
are like WHITE? What else could we substitute for WHITE in the call to PENCOLOR?
Well, in Session 7 you used several other words there: BLUE, ORANGE, GREEN,
VIOLET, BLACK, and NONE. Whatever these names refer to they are all of the same
type.

At this point you clearly need some more evidence. Delete the WRITELN
statement. Change program LINE to the following:

SCALAR DATA TYPES AND SETS 239

PROGRAM LINE$

USES
TURTLEGRAFHICS#

BEGIN
INITTURTLES$

READLN
END.

Study the three changes carefully. Run the new version.

This time program LINE works exactly as it did before. Now you have a basis for
understanding what is going on. First of all, the added VAR block declares a new
variable. Its name is COLOR. Its type seems to be something called SCREENCO-
LOR, whatever that may be.

Second, we see that COLOR appears as the target of an assignment statement in
the BEGIN/END block. That statement,

COLOR = WHITE

must mean that the variable COLOR is assigned a value equal to the value of WHITE.
Ah ha! Since there was no type conflict error message, that must mean that WHITE is
also of type SCREENCOLOR.

Finally, the successful use of COLOR as the parameter value in the PENCOLOR
call confirms our belief that COLOR does indeed have the same value as WHITE,
since the program ran as before and drew a white line. WHITE, therefore seems to be
a variable or a constant of the new type SCREENCOLOR.

We can tell whether WHITE is a variable or a constant by a simple experiment.
Insert the following assignment line immediately after the one you just added:

WHITE $= COLOR$

If WHITE is a constant, the compiler will complain about trying to assign a value to it.
If it is a variable, on the other hand, then the assignment is legal (though useless in
the present case). Run the program and find out.

Well, there you have it: WHITE (and the other colors you have used) are
constants of type SCREENCOLOR. That explains everything, doesn’t it. Or does it?
If you are like us, you probably feel at this point that a lot of questions have been left

240 APPLE PASCAL

dangling. What type is SCREENCOLOR, anyway? How did WHITE, BLUE, etc., get
to be constants of that type? Do they appear in a CONST block in TURTLEGRA-
PHICS? If so, what goes on the right side of the equal sign there?

CONST
WHITE = 777%
BLUE = 777§
etec.,

These are good questions and exactly the ones to keep in mind as you move to the
following section.

11-2 SPELLING RULES FOR CONSTANTS

In earlier programs you have written CONST blocks such as

CONST
WIDTH = 280%
HEIGHT = 192%
SFPACE = * %

and you have also written assignment statements such as

COUNT
WORDI4

. oo
[}

cow

WIDTH, HEIGHT, and SPACE are examples of constants that were defined by you.
COUNT and WORD4 are examples of variables. But what are 280, 192, ’’, 0, and
'COW ?

Well, it shouldn’t surprise you too much to realize that they too are conventional
names for the data upon which the computer operates. The three-character
sequence 2-8-0 is the way that we humans spell a word that stands for the number
that represents two hundred eighty things. Pascal, too, allows you to use this
conventional spelling for the names of numbers. But, inside the computer, this
same number is represented very differently. At the lowest level of the machine, this
number, like all other data, is represented by electric currents flowing or not flowing
in discrete circuits.

SCALAR DATA TYPES AND SETS 241

Just as 280 is a conventional name for the number it represents, so '’ is a
conventional name for the space character it represents, and 'COW ’ is another
conventional name for the string it represents. Within the computer, 280, '’, and
'COW ’ are all represented by sets of electric current patterns.

The main point here is that 280 is just a word, a sequence of characters, and not
really a number. But it is a word that Pascal knows about and processes correctly
according to the rules of arithmetic. In other words, Pascal treats it /ike a number,
give or take some of the size and precision limitations you learned about in Session
10.

In the same sense, WHITE, BLUE, BLACK, etc., are words that stand for data of a
certain type, called SCREENCOLOR. Just as the words 280 and 372 stand for
different INTEGER values, so the words ORANGE and VIOLET stand for two
different SCREENCOLOR values. Internal to the computer, as we said, each of these
color names is represented by a set of discrete currents, just as integers are.

Likewise, just as the meaning of the integers is determined by the way they
behave when added, subtracted, multiplied, or divided, so the meanings of the
colors are determined by the behavior they cause when used in the graphic
procedures that expect a parameter of type SCREENCOLOR.

Now we can give answers to some of the questions raised at the beginning of this
section. The color names, WHITE, BLUE, etc., did not appear on the left side of the
equal sign in a CONST block anywhere. In fact, the only place they could appearina
CONST block would be on the right side of an equal sign. For example, if you think
the color produced by PENCOLOR (ORANGE) is really more of atomato color, then
it would be perfectly legal to write

CONST
TOMATO = ORANGE#

and then use TOMATO as your own constant for that color.

One question remains: how did TURTLEGRAPHICS declare that the standard
spelling for these color values would be WHITE, BLUE, etc.? We'll return to that one
immediately after the following section.

11-3 SCALAR DATA TYPES

Before defining terms, some experimentation is in order. Return to the EDITOR.
Clear your workfile and type in the following short program;

242 APPLE PASCAL

) I 65 ORD (X)

It contains three new words: PRED, SUCC, and ORD. What do you think they mean?
Run the program and find out. Type in an integer (other than zero) and press
RETURN. Do it again. Try a negative integer. To quit, type a zero and press the
RETURN key.

As the results of this experiment show, PRED (X) means predecessor of X, that s,
the number that precedes X. Similarly, SUCC (X) means the successor of X, the
number that succeeds, or follows, X. Finally, ORD (X) seems merely to return the
value of X.

PRED, SUCC, and ORD are all functions. You have seen here that each one
returns an integer value when X is an integer. These functions are built-in.

Edit your program, replacing INTEGER by CHAR in the VAR block. Also replace
UNTIL X =0 by UNTIL X = ‘0’. Run again. Type the Akey (and press RETURN); the B
key; the 1 key; the 2 key; any key. Quit as before using the zero key and RETURN.

The result is different this time and may surprise you. First of all, PRED, SUCC,
and ORD can accept a character value as easily as an integer value. Furthermore
PRED and SUCC return character values when the parameter has a character value.
(In this sense, these functions are as adaptive as the numeric functions SQR and
ABS, which are of type integer or real, depending upon the type of the parameter.)

Most significantly, you saw that character values have a predefined order. The
successor of 'A’is 'B’, for example. Furthermore, the ORD function returns a unique
integer for each character value. ORD ('A’) = 65, ORD ('B’) = 66, ORD ('2") = 50, etc.
The meaning of ORD is now clearer: it gives the order number of the character value
thatis passed as a parameter to it. (It did the same with integer values, but the order
number was equal to the integer value.) The order number of the complete set of
Apple Pascal characters varies between 0 and 255, butyou can only type a subset of
them from the Apple keyboard. (See Appendix F for a complete list of Apple Pascal
character values and ORD numbers.)

These two experiments show that character and integer variables have some
basic similarities. The set in each case is finite and is ordered in a definite way, such
that each value, except at the extremes, has a successor and a predecessor. Doyou
think this is also true of strings or of real numbers?

Change CHAR to STRING and run the program. Now change STRING to REAL.
Also change UNTIL X = ‘0’ back to UNTIL X = 0. Try again.

The factthat these two programs did not run means that real numbers and strings
don’t have well-defined successors or predecessors. Think about it. You can always
fit some real number between any two other real numbers, and you can always insert
another string between two strings so that all three are in dictionary order.

SCALAR DATA TYPES AND SETS 243

Integers can be counted. So can characters.
Any type of data which has values that can be
counted in the same way as integers or
characters is said to be a scalar data type.
INTEGER and CHAR are scalar types, but
REAL and STRING are not.

If characters can be counted, then we should be able to use them as limits of a
FOR loop, right? Edit your program as follows and then run it.

PROGRAM SCALAR?

VAR
X & CHAR®

BEGIN
FOR X ¢= * * T0 ‘3’ DO .
 WRITELN (X § 6y ORD (X) & &)

END.

This program shows the order numbers of the standard characters that you can type
in from your Apple keyboard. The resulting table also shows how two characters will
compare: '3 > '2', for example is true, since ORD (3) =51 and ORD (2) =50. On the
other hand '3’' >’A’ is false, since ORD (A) = 65.

Scalar types, therefore, can be used to step
through FOR loops, while real and string types
cannot. For the same reasons, scalar types can
be used in CASE statements to enumerate the
cases, while reals and strings cannot.

There is a way in Pascal to specify an item of character data by means of its order
number. Change your program as follows.

244 APPLE PASCAL

PROGRAM SCALAR#
VA

BEGIN

END.

Run the result and compare its output with that of the previous version.

CHR and ORD are called inverses of one another. For example, ORD ('A’) = 65
and CHR (65) = 'A’. These two functions allow you to move easily and conveniently
between thinking about characters as data of type CHAR and as data of type
INTEGER. .

There are 256 distinct values of type CHAR. That means that CHR (0) through
CHR (255) are all distinct values. CHR (256) is identical to CHR (0), etc. On the other
hand, some characters which are distinct from one another will look the same when
written on your screen. That is because your computer uses the same graphic
symbol for more than one character value. Furthermore, it has no symbols for some
values. Change the first text line of your FOR statement to read

and run again. Use CTRL-S to inspect the sequence of characters.

We haven'tsaid anything about the boolean data type, which has only two values:
true and false. Is boolean a scalar type? Change your program once more so that it
looks like the following:

PROGRAM SCALAR

VAR
¥

BEGIN

END.,

Note that X is declared to be of type boolean. Then in the BEGIN/END block it is
assigned the truth value of the expression 1 > 2, which of course is false. The next
statement writes out the order number of this value. The third statement assigns to X
the truth value (true) of the expression 2 > 1. The last statement writes out its order
number. Run the program.

SCALAR DATA TYPES AND SETS 245

Well, that worked; so the boolean type is a particularly simple scalar type, having
only two values. The order number of false and true are 0 and 1 respectively. Trueis
the successor of false. False is the predecessor of true.

The above example shows how the boolean value of an expression suchas 2 > 1
can be assigned to a boolean variable. But what about the boolean constants TRUE -
and FALSE?.

Change your BEGIN/END block to look like this:

BEGIN

Run the program.

As you see, this is a legal program and gives the same results as before. TRUE
and FALSE, just like WHITE and 280 and 'COW’, are standard spellings for
constants. They are not variable names and cannot apear on the left side of an
assignment statement.

Change your BEGIN/END block once more as follows:

BEGIN

| k@afpfnl » Terloo -7

The error message here shows that procedure WRITELN (and WRITE) cannot
accept a boolean value as a parameter. This is really too bad, since it puts a
programming burden on you when you need to write a truth value on the screen.
One way of handling that task is shown in the following version of your program:

246 APPLE PASCAL

PROGRAM SCALARS

VAR
X ¢ BOOLEANS

END

The heart of procedure WRITETRUTH is a CASE statement with constant case
labels of type boolean: TRUE and FALSE. Ifthe parameter value passedto TFis true
then the string "'TRUE’ is written on the screen. Otherwise the string 'FALSE’ is
written. Since WRITELN can output strings, the program will work. If you have the
time, revise your program as shown and run it.

So far you have found that the integer, character, and boolean types are each
examples of scalar types. But what about the screen color type that began this
session? Is it also a scalar type? The simplest way to find out is to see whether ORD
(WHITE) for example, exists and if so, what it is equal to.

Change your program as follows and run it.

PROGRAM SCALARG

BEGIN
WRITELN (ORD (WHITE))
END.

This experiment proves that the screen colors belong to a scalar type, and that
WHITE has an order value of one. Edit the program, changing WHITE to NONE,
ORANGE, BLACK, or VIOLET. Rerun it.

If you were very patient and systematic you could prove that the full set of
TURTLEGRAPHICS color constants and their order numbers are as follows:

SCALAR DATA TYPES AND SETS 247

NONE
WHITE
BLACK
REVERSE
RADAR
BLACK1
GREEN
VIOLET
WHITE1
BLACK?2
ORANGE 10
BLUE 1
WHITE2 12

©COoO~NOOOTAhWN—=O

In conclusion, then, you have been introduced to four different types so far in the
family of scalar types: INTEGER, CHAR, BOOLEAN, and SCREENCOLOR.

11-4 CREATING NEW SCALAR DATA TYPES

One of the novel features of Pascal is that it permits you to define new scalar data
types of your own choosing and to name the constant values of your type to be
whatever you want. In this section we return to the question left dangling at the end
of Section 11-2: how did TURTLEGRAPHICS declare that the standard spelling for
screen color values would be WHITE, BLUE, etc.? More generally, how do you
define a new scalar type and the spelling of its legal values?

Let's approach this question from the point of view of a concrete example. In all
the earlier sessions dealing with the NOTE procedure, the musical pitch was always
specified by a number. You had to remember that a pitch of 20 corresponded to
middle C, that 21 was C-sharp, etc. For people who know music it would be much
more natural to describe a melody in terms of the conventional names of the notes,
rather than the numbers required by procedure NOTE. For example, a procedure to
play the C-major scale (the white keys on a piano, beginning with a C-note) would
be quite readable if it looked like this:

FROCEDURE IIOREMI$
BEGIN
FLAY (MIDDLEC)# FLAY (I
FLAY (E)# FLAY (F)§ FLAY (G)#
FLAY (A)# FLAY (R)§ FLAY (HIGHC)
END? (X DOREMI X)

In order to make DOREMI work we would have to do two things: (1) define
MIDDLEC, D, etc., to be the proper spellings of new data values, and (2) define
procedure PLAY such that it accepts a parameter of the new type. We will start with
step 1.

248 APPLE PASCAL

Clear out your workfile and enter the following program text:

»

HIGHC) #

Run this program.

You have just succeeded in creating a totally new data type. The name of the type
is MUSICNOTE. It is declared in a new TYPE block in the declaration section. Legal
spellings of its constant values are MIDDLEC, CSHARP, D, etc. When you ran the
program you learned that ORD (MIDDLEC) was zero, and ORD (HIGHC) was 12.
For a programmer defined type, the value of ORD is the same as the position of the
constant in the list in the TYPE block. The first position is numbered zero.

Now you can see how the TURTLEGRAPHICS unit specified the spellings of the
screen colors. It must contain a TYPE block with the following declaration:

TYPE
SCREENCOLOR = (NONEs WHITEs BLACKs REVERSEY
RADARy BLACK1s GREENy VIOLET»
WHITEly BLACK2y ORANGEs ELUES»
WHITE2)#

where the order of the names in parentheses established the ORD values of the
colors.

Getting back to our task of using MUSICNOTE constants to generate sounds, we
need to remember that the built-in procedure NOTE is the only object around that
makes a sound, and it requires a pitch parameter of type integer. There would be a
type conflict if you tried to pass MIDDLEC to NOTE, since MIDDLEC is not an
integer.

The missing link, as you may have guessed, is the ORD function. As you found,
ORD (MIDDLEC) is equal to zero. But a pitch value of 20 in the NOTE procedure call
results in an audible middle-C pitch. Therefore, we need to use 20 + ORD
(MIDDLEC) as the pitch value in the callto NOTE. This basic idea is embodied in the
following program:

SCALAR DATA TYPES AND SETS 249

PROGRAM MUSICH

 DURATION

TYPE
MUSICNOTE = (MIDDLECy CSHARF» D'y EFLAT» Es Fo
FSHARFy Gy GSHARF» Ay BFLATs By HIGHC)#

REGIN
BOREMI
END.

Working from the main program level down, we see that the main BEGIN/END block
contains only a single call to DOREMI. DOREMI contains eight calls to PLAY, each
time passing as a parameter a constant of type MUSICNOTE. PLAY receives that
value, computes its ORD (an integer from zero to 12), adds 20 to that, and uses the
result as the pitch number in the call to NOTE. (The duration number in the call to
NOTE is a global constant declared in the main CONST block. Its name is
DURATION and its value is 50.)

Edit your program to look like the text above. Run it. As advertised, this program
plays the eight-note C-major scale. It is important to see how it was able to do that
and especially to understand the crucial role of procedure PLAY in translating
MUSICNOTE values into the correct INTEGER values needed by procedure NOTE.
If you have doubts, go back to the program text again and study it closely.

To gain additional familiarity with the concept of defining new scalar data types
and using them, let's extend program MUSIC so that it handles the case of scales in
different musical keys. Transposing to different keys, as it is called, is difficult to do
on the piano, but easy on the computer. All that is required is to add the same pitch
value to each pitch in the calls to NOTE. For example, to raise the C-scale to a C#-
scale you have to add one to each pitch in NOTE. But ORD (CSHARP) =1, so thereis
an easy way to compute the amount to add. The following program includes this
new feature.

250 APPLE PASCAL

PROGRAM MUSICH

USES
AFFLESTUFF #

CONST
DURATION = 50%

TYPE
MUSICNOTE = (MIDDLECs CSHARFsy D» EFLAT» Es Fo»
FSHARFy Gy GSHARFs Ay BFLAT» By HIGHC)$

PROCEDURE FLAY (ONENOTE ¢ MUSICNOTE)$
BEGIN

EN

PROCEDURE DOREMI
BEGIN
FLAY (MIDDLEC)$ PLAY (I3}
FLAY (E)# FLAY (F)$ FLAY (G}
FLAY (A)$ FLAY (B)# FLAY (HIGHC)
END? (X DOREMI %)

BEGIN

END.

Notice here that the program now has a VAR block where KEY is declared to be a
variable of type MUSICNOTE. That means that it will be legal to assign values to
KEY, such as BFLAT and CSHARP. Procedure PLAY is also different now: ORD
(KEY) has been added to the previous sum of 20 and ORD (ONENOTE). Finally, the
main BEGIN/END block now has three calls to DOREMI, each preceded by the
assignment to KEY of a value that establishes the starting note of the scale.

Run the program and listen to the three scales.

The first scale you heard was no different from the one before, since the value of
KEY was MIDDLEC and ORD (MIDDLEC) is equal to zero; hence, nothing was
added to the original pitch values in procedure PLAY. The second scale, however,
sounded different. The KEY value was set to FSHARP, and ORD (FSHARP) has the
value 6. This number was added to each pitch number in the call to NOTE. A third
transposition took place for the third scale.

To convince you further that this new data type is “real”, let's use MUSICNOTE
values in a FOR loop. Change your main BEGIN/END block to look like this:

BE

SCALAR DATA TYPES AND SETS 251

Run the new version of MUSIC. Notice that the value of KEY steps through the
sequence of values MIDDLEC, CSHARP, D, etc., through HIGHC. This makes sense
because these values are members of a scalar data type and so have a definite,
countable order. For the same reason, the boolean expression

MIDDLEC < HIGHC

is legal and has a value of true. You could also use MUSICNOTE constants as case
labels in a CASE statement. ‘

11-5 GRAMMAR RULES FOR SCALAR DATA TYPES
The general ruleto keep in mind is that data of any scalar type can be used almost
anywhere in Pascal that you would have used an integer. Below is a list of legal uses
of scalar data.
® As parameters of ORD, PRED, and SUCC functions.
® As the variable, initial value and final value of a FOR statement.
® As labels in a CASE statement.
® In boolean expressions involving relational operators (>, <, =).
B As subscripts of arrays (See Session 12).
® As components of arrays (See Session 12).
B As components of records (See Session 13)
B As subrange delimiters (See Session 12).
Here are a few places where integers are legal but other scalar types are illegal:
B |n numeric expressions.
B As parameters in ABS, SQR and other numeric functions.

® As parameters in WRITE and WRITELN procedures.

® As parameters in any declared procedure or function that is defined for integer
parameters alone.

252 APPLE PASCAL

All scalar types share two properties with the integers: (1) they have discrete,
countable values; (2) the values have a definite order. Integers have a third property
that the others lack: they can represent a quantity of something. That is why 8 DIV 2
makes sense, whereas MIDDLEC DIV BFLAT is meaningless. If you keep these
similarities and differences in mind, it will always be clear to you when it is a good
idea to create a new scalar data type for a particular programming task.

Note that the only built-in functions that will accept as a parameter value any
scalar type are PRED, SUCC, and ORD. PRED and SUCC take on the same type as
the parameter supplied. Thus, SUCC (WHITE) is of type SCREENCOLOR, while
SUCC (BFLAT) is of type MUSICNOTE, and SUCC ('A’) is of type CHAR. In this
sense PRED and SUCC are like ABS and SQR with regard to integer and real
number parameters, as stated before.

The ORD function is itself of integer type. ORD (X) returns a number that tells the
position of the value of X in the list of all possible values. In the case of scalar types
that you define, the order of the list is the same as the order specified in your type
declaration. The first constant in the list has an order number of zero. (Watch out for
OBOB!) For integers, ORD (X) = X. For characters, ORD (X) is the same as the so-
called ASC// value of the character. (This is true of Apple Pascal but may not be true
of other versions of Pascal. For atable of these numeric values, see Appendix F.) For
boolean data, ORD (X) is zero if X = FALSE and one if X = TRUE.

Not all uses of PRED and SUCC are proper. If X is the first item in the list of data
values then PRED (X) is not properly defined. Likewise there is no proper SUCC (X)
if X'is the last item in the list of legal values of that type. On the other hand, Apple
Pascal will give you no error message if you disobey these rules, and you may get
incorrect results.

Creating a new scalar type of your own is usually done in a TYPE block in the
declaration section of the program, a procedure, or a function. As with CONST
and VAR blocks, there can be only one TYPE block per program (or procedure or
function). A type is known globally if declared in the main program and is known
locally if declared in a procedure or function. (This is true of all Pascal names:
variables, constants, functions, and procedures.)

The TYPE block must appear after the CONST block (if any) and before the VAR
block (if any). The TYPE block begins with the word TYPE and is followed by one or
more type declarations. Each type declaration is followed by a semicolon. The form
of a type declaration is

name = type

where the name is up to you but must conformto the gené‘ral Pascal rules for names.
~ In program MUSIC the name in the type declaration is MUSICNOTE. On the right
side of the equal sign, the word type can stand for many different things. In program
MUSIC it stands for

(MIDDLECy CSHARFs Dy EFLATy Evy Fo
FSHARFy Gy GSHARFy Ay BFLAT» Ey HIGHC)

SCALAR DATA TYPES AND SETS 253

which is just a parenthesized list of the correct spellings of the constant values that
are legal for data of type MUSICNOTE. This form of type declaration is the only way
to define a new scalar data type.

You should realize, however, that the TYPE block can be used for other
purposes. If yousimply didn't like the word “integer” for example, you could declare

TYPE
WHOLENUMBER = INTEGER?$

and then declare your variables to be of type WHOLENUMBER. Note that the type
declaration here conforms to the above grammar rule: WHOLENUMBER is a name
and INTEGER isatype. In another application that uses many four-character strings
it may make sense to declare

TYPE
SHORTSTRING = STRING [471%

in your TYPE block and then use the name SHORTSTRING for the type of several
string variables declared in your VAR block.

In most situations, you will find that it isn't necessary to have a TYPE block at all.
In the previous case, for example, it would have been easier to type STRING [4] than
SHORTSTRING when declaring the variables. You don’t even need a TYPE block to
define new scalar types. It would have been perfectly legal to write

VAR
KEY ¢ (MIDDLEC, CSHARFy Dty EFLATs Es Fo»
FSHARFs Gy GSHARFs Ay BFLATs Ry HIGHC)?$

which would have both defined the legal values of KEY and identified its type as
being distinct from the built-in data types.

So, why have a TYPE block? The déeper reason for having a separate place for
type declarations is so that the program will be easier to read and easier to
understand. If well used, the TYPE block will be the single place to go to find out
what the underlying data of the program is like. A close look at the TYPE block and
then the VAR block will reveal the data structures upon which the procedures will
operate. By means of these block structures in the program text, Pascal forces the
attention of both program author and program reader on these two central aspects
of any program: data structures and procedures.

11-6 SETS OF SCALAR DATA

It may have crossed your mind earlier in this session that there must be an easier
way to write the DOREMI procedure. In the present version of your program it looks
like this:

254 APPLE PASCAL

FROCEDURE DOREMI$
BEGIN
FLAY (MIDDLEC)$ FLAY (IN$
FLAY (ED)$ FLAY (F)§ FLAY (G)#
FLAY (A% FLAY (B)$ FLAY (HIGHC)
END? (X DOREMI %)

Any time that you see a list of very similar statements, one after the other, you
should ask yourself whether there is a more elegant, less wordy way of getting the
same result. In your present version of DOREMI you have eight statementsinarow,
each of which is a call to procedure PLAY. That seems needlessly repetitious.

Repetition suggests doing the same thing again and again, and that should
suggest the idea of a loop structure. The problem is that the sequence of notes is not
the complete set of values of type MUSICNOTE; so you cannot simply create a FOR
loop exactly like the one in the main BEGIN/END block of the program. You need a
mechanism for getting only the notes you want.

That mechanism is the topic of this section. We will change procedure DOREMI
so that a FOR statement will loop through all the values of type MUSICNOTE. For
each note in the loop, DOREMI will test it to see whether it is a member of the set of
white-key notes. That is a new idea. Until now you have not seen a way to test
whether a given piece of data isamember of a set. Evidently you will need some new
grammatical objects, and Pascal provides them.

SCALAR DATA TYPES AND SETS 255

PROGRAM MUSICH

USES
AFPFLESTUFF §

CONST
DURATION = 503

TYPE
MUSICNOTE = (MIDDLEC, CSHARF» ['s EFLATs Es Fo
FSHARF, Gy GSHARF» Ay BFLATs E» HIGHC)#
OF MUSICNOTES

VAR

MUSICNOTES
, NOTESET#

PROCEDURE FLAY (ONENOTE ! MUSICNOTE)$
BEGIN
NOTE (ORDN (KEY) + 20 + ORD (ONENOTE)» DURATION)
END? (X FPLAY %)

PROCEDURE LIOREMI §
Y,

END3? (X DOREMI %)

BEGIN
WHITEREYS $= [MIDDLEC, s Es Fs Gy Ar By
FOR KEY = MIDDLEC: TO HIGHC DO
DOREMI

END.

Notice that there is a new variable called WHITEKEYS. It is of a new type called
NOTESET. NOTESET is defined in the TYPE block to be a SET. This is a reserved
word that you have not seen besfore. Notice further that the FOR-loop in DOREMI
now goes through all the notes,, but that an IF statement decides whether ornotto
PLAY each one. Run the program.

Program MUSIC sounds exactly the same as before, which is good news. This
means that both ways of thinkingg about this problem work out in practice. Now let’s
see how this second method actwally works. The new idea here is found in the global
TYPE block, where NOTESET iis declared to be of type SET. This is a new data

Structure and won't be familiar tto people who know only Basic or Fortran.
The variable declaration

WHITEKEYS ! NOOTESETS

256 APPLE PASCAL

tells two of the three properties of this new variable. Its name is WHITEKEYS. Its type
is NOTESET, which was defined in the TYPE block. As always with variables, its
value is established by assignment. In your program the statement

WHITEKEYS $¢= L[MIDDLECy Dy Ey Fy Gy Ay By HIGHCI?

assigns a value to WHITEKEYS. The value is a set of names, each one of which is a
constant of type MUSICNOTE. In the assignment statement in your program the set
contains eight members, and they correspond to the white-key notes of the diatonic
scale. The value of WHITEKEYS, therefore, is this entire set of eight notes.

Now we turn to the IF statement in procedure DOREMI, since that is where the
decision is made whether or not to PLAY a note.

IF LOOFNOTE IN WHITEKEYS THEN
FLAY (LOOPNOTE)

If you read this as an English sentence you will see the meaning immediately: if the
value of LOOPNOTE is IN the set of WHITEKEYS, THEN PLAY it. That, in fact, is
precisely the meaning of the reserved word IN in Pascal. It is a relational operator
like >, <, and =. The phrase

LOOFNOTE IN WHITEKEYS

is a boolean expression, whose value is either true or false. Itis true if the value of the
term on the left side of the word IN, namely LOOPNOTE, is contained in the set
specified by the term on the right side of the word IN, namely WHITEKEYS.

In our example, the FOR statement contained in DOREMI begins by assigning a
value of MIDDLEC to the LOOPNOTE variable. But MIDDLEC is indeed a member of
the set WHITEKEYS. So LOOPNOTE IN WHITEKEYS is true, and the call, PLAY
(LOOPNOTE), is carried out: we hear middie C. The second time through the loop,
LOOPNOTE is incremented from MIDDLEC to CSHARP. Since CSHARP is not in
the set WHITEKEYS, the boolean expression is now false and the call to PLAY is not
carried out: we hear nothing. On the third time through, LOOPNOTE is equal to D,
which is in WHITEKEYS; and we hear D played. The process continues until
LOOPNOTE reaches HIGHC. Whether each note is played or not depends upon
whether it is in the set WHITEKEYS.

Edit your program so that the IF statement looks like this:

IF NOT (LOOFNOTE IN WHITEKEYS) THEN
FLAY (LOOFNOTE)

Run the result.

SCALAR DATA TYPES AND SETS 257

You heard a sequence of s:ales contaimyjng notes not in the diatonic scale. The
first such scale you heard orrespondedy to the black keys on the piano. The
reserved word NOT simply negates they yajue of the boolean expression in
parentheses, turning true into @lSe and falség into true. NOT, as you saw in Session 8,
can be used with any boolean@xpression: \NOT (3 > 2) is false since 3 > 2 is true, for
example. Of course, you woul never needy {5 say NOT (A > B), since A<= B means
exactly the same thing and is €asier to reayq.

Do you think the order of stiting the menypers of a setaffects the value of the set?
Change your program as foll¢Ws:

The global VAR block:

VAR o
KEY ¢ MUSICNOTE?
WHITEKEYS, OTHERKEYY s NoTEGETS

The main BEGIN/END block:

BEGIN
WHITEKEYS $= [MIDDLECs Iy, g, F, Gy Ay By HIGHCI}
OTHERKEYS $= [AIGHC» By 4, o, F, g Iy MIDDLECI)
IF WHITEKEYS = OTHERKEYS pypy ,
WRITELN (/SaAlME’)
ELSE
WRITELN (’/pIFFERENT?)
END,

You have added the varigble OTHERKEYS which is of the same type as
WHITEKEYS. In the main BEGIN/END blgcy yoy gave OTHERKEYS a value that
looks different from the value of WHITEKEYS. The rest of the program will
determine whether the two values are the same or different. Run the program,

That experiment shows thait tWO sets hayinq the same members are identical in
value regardless of the order if? Which the empers are listed. It makes no sense to
talk about “the fifth member o'f @ set.”

It is possible to do arithmettic On sets. The following statements,

SET1 $= [E, Fr GI¥
SETR2 3= [D, [EI}

SET3 = gET1 + SET29
SET4 t= GET1 % SET2#
SETS t= SET1 ~— SETZ

will result in values for SET3, $SET4, and SgT5 a5 follows:

SET3 = [hy Ey Fr GI
SET4 = [E]
SETS [Fy GIJ

i

]

258 APPLE PASCAL

The plus sign creates the union of the two sets—i.e., a set that contains all the
members of both sets. The asterisk creates the intersection of the two sets—i.e., a
set that contains only the members that are in both sets. The minus sign creates a set
containing all the members of the first set that are not in the second set.

You have also seen earlier that it is possible to compare two sets by means of the
relational operators. A =B is true if set A and set B are identical. A<=BistrueifAisa
subset of B. A>= B is true if B is a subset of A. Note that > and < do not refer to the
number of members in the two sets but only to whether one set is contained in the
other.

You have already seen that constants of type SET are formed by enclosing in
brackets a list of values corresponding to the members of the set. (The type of the
member is called the base type of the set. Forexample, the base type of NOTESET is
MUSICNOTE.) A set with no members is called the null setand is represented by the
symbol []. Constant sets can also be represented by subrange notation. For
example ['A’..’Z’] is the set of 26 letters of the alphabet. (Subranges will be discussed
more fully in Session 12.)

The following program shows how you can use sets to tell whether a character
typed on the keyboard is a letter, a number, or something else.

PROGRAM KEYCHECK#

TYPE
CHARSET = SET OF CHAR}#

VAR
LETTERS» NUMEBERS ¢ CHARSET?#
CHARACTER ¢ CHAR$

BEGIN
LETTERS = L[‘A’..7271%
NUMBERS $= [/07..,’971%
WRITELN (/TYPE SOMETHING [Q = QUITI’)}#
REPEAT

REALIl (CHARACTER) §

IF CHARACTER IN LETTERS THEN
WRITELN (7% IT’’S A LETTER’)

ELSE IF CHARACTER IN NUMBERS THEN
WRITELN (73 IT’’S8 A NUMEBER’)

ELSE
WRITELN (7! IT’’S NOT ALFHANUMERIC?)

UNTIL CHARACTER = Q7
END.

Thevariables LETTERS and NUMBERS are of type CHARSET; CHARSET is defined
in the TYPE block to be a SET, with base type equal to CHAR. That is, a variable of
type CHARSET can have as a value any particular set of characters. The first line of
the BEGIN/END block assigns the set of 26 letters to LETTERS, and the second line
assigns the set of 10 digits to NUMBERS. The WRITELN call prompts the user. The
rest of the program is a REPEAT loop that gets keyboard input of a single character
and tests to see whether it is in the set of letters or in the set of numbers or in neither

SCALAR DATA TYPES AND SETS 259

set. The loop writes an appropriate message and continues until you typea Q. (Note
that two apostrophes in succession are treated as a single apostrophe in the string
constants in the last three WRITELN calls.)

These programs are fairly typical examples of the use of sets as data items ina
program. With more experience you will find that sets can often solve some
otherwise very tricky programming problems and can help make yourintentclearer
than if you had taken some other approach.

Here are a few limitations on the use of sets. You cannot have a set of strings, nor
aset of real numbers. A set of boolean values, while legal, is useless. A set of arrays
(see Session 12) is not allowed (but an array of sets is perfectly fine). A set of records
(see Session 13) is illegal also (although a set can be contained in a record). You
may not define a function to be of type SET (but you can pass asetasaparameterto
a function or a procedure). Negative integers and integers greater than 511 may not
be included in any set of integers. Finally, sets of more than 512 members are illegal
in Apple Pascal.

SUMMARY

B |n this session you have explored the use of scalar data types and sets of scalar
data.

® You found that integers, characters, and boolean data were all examples of
scalar data, as were the screencolor values you used in Session 7.

B For each one of these types, the data values were discrete, countable, and
ordered.

B You experimented with the PRED, SUCC, and ORD functions and found that
they each accepted parameters of any scalar type.

® You used the TYPE declaration block to create your own new scalar type and to
declare the legal constant values of that type.

B You followed the TYPE block with a VAR block to define variables of the new
type.

® You used the new constant values in assignment statements in the program.

® You found that the WRITE and WRITELN procedures will not accept any scalar
values except integers and characters.

B You explored scalar types of your own invention by means of an extended
musical example.

¥ You learned that the TYPE block could be used for other purposes than defining
new scalar types.

® You found that an entire set of scalar values could be treated as a single piece of
data.

260 APPLE PASCAL

You declared variables to be of type SET.
You found that the members of a set have no order in the set.

You learned that +, -, and * were legal operations for sets, but with slightly
different meanings than for numbers.

You learned that the relational operators >, <, and =, could be used to compare
sets, again with slightly different meanings than for scalar data.

You found anew relational operator, IN, such that the boolean expressionAINB
is true if the value of A is amember of the set B, and false if A is notamember of B.
You used the NOT operator to negate a boolean expression.

You found that the value of a set could be specified by a bracketed list of
constants or by a bracketed subrange.

Table 11.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in boldface. (Code: a = declared in APPLESTUFF; g =

SCALAR DATA TYPES AND SETS 261

declared in TURTLEGRAPHICS; = declared in TRANSCEND

Reserved
Words

PROGRAM
USES
CONST
TYPE

SET
VAR
PROCEDURE
FUNCTION
BEGIN

DOWNTO

DO
REPEAT

UNTIL
WHILE
IF

THEN

ELSE
CASE

OF

END

QOO 9 ®

Built-In
Procedures

DELETE
READ
READLN
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO
VIEWPORT

QUESTIONS AND PROBLEMS

1. What is the value of each expression given below? (If the expression is illegal,

explain why.)

a. ORD (1)

Built-In
Functions

Boolean
a BUTTON
a KEYPRESS

Char
CHR

Integer
LENGTH
ORD
POS
ROUND
TRUNC

a PADDLE

a RANDOM

Real
ABS
PWROFTEN
SQR

t TAN

t COS

t EXP

t LN

t LOG

t SIN

t SQRT

String
CONCAT
COPY

Other
PRED
Succ

Other
Built-Ins

Constants
FALSE
TRUE
MAXINT

g NONE

g WHITE

g BLACK

g REVERSE

g RADAR

g BLACK1

g GREEN

g VIOLET

g WHITE1

g BLACK2

g ORANGE

g BLUE

g WHITE2

Types
BOOLEAN
CHAR
INTEGER
REAL
STRING

g SCREENCOLOR

Units
APPLESTUFF
TRANSCEND

TURTLEGRAPHICS

262 APPLE PASCAL
b. ORD ('1")
c. ORD (1.0)
d. ORD (PRED (1))
e. PRED (SUCC ('Z"))
f. SUCC ('ONE’)
g. CHR (ORD ('P"))
h. ORD (SUCC (FALSE))
i. ORD (-23)

2. State the type of each of the following built-in functions.

a. ORD
b. CHR
c. ABS
d. SUCC
e. PRED

3. A program contains the following declaration:

TYPE
MONTH = (JAN» FEBsy MAR» APRy MAY» JUNy
JULs AUGs SEP» OCT» NOVs DEC)?#

What is the value of each expression given below? (If the expression is illegal or
nonstandard explain why.)

a. ORD (JAN)

b. ORD (DEC) :
c. SUCC (SUCC (SUCC (APR)))

d. ORD (SUCC (DEC))

e. PRED (SUCC (SEP))

f. SEP > AUG

SCALAR DATA TYPES AND SETS 263

4. The program in Question 3 also contains the declaration

VAR
BIRTHMONTH ¢ MONTH#

What is the result of executing each of the statements given below? (If the
statement is illegal, explain why.)

a. WRITELN (NOV)

b. WRITELN (ORD (NOV))
¢. BIRTHMONTH := JUL

d. JUL := BIRTHMONTH

e. BIRTHMONTH := JUL + 2

5. The program in Question 3 contains the following function declaration:

FUNCTION MONTHNUM (N: INTEGER) ! MONTH#

VAR
MO : ?PT §
BEGIN
MO = JAN#
WHILE N > O DO
BEGIN
MO = SUCC (??7)%
b= PR
LA]
MONTHNUM 3= 7?7

END?

Replace each ??? with the proper word such that MONTHNUM (0) returns the
value JAN, MONTHNUM (1) returns FEB, etc.

6. If you did Question 5 correctly, function MONTHNUM works properly for

parameter values 0 through 11.
a. What does MONTHNUM return for other parameter values?

b. Add an IF statement to MONTHNUM so that an error message is output if the
parameter is not in the proper range.

264 APPLE PASCAL

7. A program contains the following assignment statements:

SETA 3= [1..91%
SETE = L2y 4y 6y 8y 1013
SETC $¢= L/17..7971

Later in the program the following expressions are evaluated. What is the
resulting value of each expression? (If the expression is illegal, explain why.)

a. SETA + SETB
b. SETA - SETB
c. SETA * SETB
d. SETB - SETA
e. SETB - SETB
f. SETB - 10

8. Use the information and instructions in Question 7 for the expressions given
below.

a. SET A>[3.7]
b. SETA > SETB
c. SETA = SETC
d. 5 IN SETA

e. 10 IN SETA

-

.5 IN SETC

9. A program unit contains the following VAR block.

VAR .
COINSET ¢ SET OF (FENNYy NICKEL», DIME)

a. How many distinct values can COINSET have? List them all.

b. Explain in English what information a SET variable, such as COINSET, can
contain.

et

SCALAR DATA TYPES AND SETS 265

10. A program unit contains the VAR block shown in Question 9. For each statement
below, say whether it is legal or not. (If it is illegal, explain why.)

a. COINSET := PENNY

b. COINSET := [NICKEL]

c. COINSET :=[]

d. COINSET := COINSET + [DIME]
e. COINSET := [QUARTER]

f. IF [PENNY] IN COINSET THEN
g. IF NICKEL < DIME THEN

11. Consider the following declaration section of a program unit.

TYPE
MONEY = (PENNYs NICKEL, DIMEs, QUARTER)®
MONEYSET = SET OF MONEY$#

FUNCTION CENTS (CHANGE : ?77) ! INTEGER#$
VAR
COIN ¢ 7?77 #
SUM ¢ ?PT §
BEGIN
SUM = 0%
FOR COIN (= 7?77 TO 7?77 DO
IF COIN IN 777 THEN
CASE 777 OF
FENNY ¢ SUM = SUM + 1%
TRP L PPP i= PP O+ i
PRP Y PPP = PPT + PP}
QUARTER ¢ 7?77 = 77?7 + 777
END? (% CASE X)
TRP i= GUM
END? (X CENTS X%)

Replace each occurrence of ??? by the proper word or number so that the
function will return the correct number of cents equal to the total monetary value
of the coins represented by the parameter passed to the function. For example,
CENTS ([PENNY, DIME]) should return a value of 11.

12. WRITE and WRITELN are unable to accept programmer-defined data types as
parameters. Write your own procedure, named WRITEDAY, such that the call
WRITEDAY (FRI) causes the string 'FRIDAY’ to be written on the screen.

266 APPLE PASCAL

13.

14.

WRITEDAY should work correctly for all data values of type DAYOFWEEK as
declared below.

TYPE)
DAYOFWEEK = (MON» TUE» WEDsy THUy FRI» SAT» SUN)

(Hint: use a CASE statement.)

Given the TYPE declaration in Question 12, you want to be able to declare four
variables such that the following assignment statements are all legal.

ALL = L[MON..SUNIS
MWF = LMONy WEDy FRIT$
TTH &= LTUEy THUI$
S50 t= ALL -~ MWF - TTH

a. Write a VAR block that properly declares the name and type of each of the four
variables above. (Note that the last statement will be illegal unless all four types
are identical.)

b. What is the value of SSU?

NUMSTR is a string whose characters are all numeric digits ‘0’ through '9’. Write
a program that prompts the user to type in a positive whole number. The
program should then loop through all the characters of NUMSTR and compute
the integer value represented by the string. (Hint: ORD (CH) - ORD ('0') is the
integer value represented by the character CH if CH is a numeric digit. Looping
through NUMSTR from the left works best. Each time you move to the next
character, multiply the previous numeric result by 10.)

SESSION

TWELVE

ARRAYS

In previous sessions you have written many programs that use variables to
represent and manipulate data. Sometimes the data were integer or real numbers.
Sometimes the data were characters or strings. In Session 11 you learned how to
define new types of scalar data. In all these situations you found that a single
variable had a single value. Towards the end of Session 11 you learned that a
variable of type SET contains information about a whole collection of values. In this
session you will learn another way that a single variable may represent an entire
collection of values, such as a list of words or a list of numbers.

Nearly all practical applications of the computer involve the manipulation of lists
of data, where each particular element of data is to be handled in the same way as
every other data element in the list. It would be tedious to have to give a separate
name to each element, and then to have to copy the same program statements again
and again for each element. For example, a stcre owner mightkeep in the computer
alist of the wholesale prices of all items for sale in the store. A useful program might
run through the complete list of prices, mark each one up by 40%, add a six percent
sales tax, and then print out the net selling price of each item, including tax. It would
be painful to have to write

NET1 = WHOLESALE1l X 1.4 % 1.06%
NET2 != WHOLESALE2 % 1.4 % 1,06%
NET3 1= WHOLESALE3 % 1.4 % 1,064

. . * 3

. * * .
NET983 = WHOLESALE?83 % 1.4 % 1.06%

for the 983 items the store carries. Furthermore, what would happen if the store
began to carry 1027 items, or 842 items? The program would have to be rewritten
every time the number of items changed.

Life should be easier than this, and itis. The designers of all computer languages
have faced up to this basic application need and have provided facilities for dealing
with whole lists, and with their individual elements. That is the topic of this session.

267

268 APPLE PASCAL

SESSION GOALS

You will learn how to declare and how to assign values to a new variable of type
ARRAY. You will see how to create and use arrays of strings and arrays of integers.
You will see how to use subrange notation to specify the dimension of anarray. You
will find that only variables, not functions or constants, may be of type array. You will
write procedures for sorting arrays of data and for shuffling arrays of data into
random order. You will see examples of bottom-up and top-down program design.
You will use arrays as data structures to represent a list of words and a deck of cards.

12-1 A LIST OF WORDS

Back in Session 9 you wrote a program named SCANNER. It asked you to type in
any sentence, and then it broke the sentence up into individual words and wrote
each one as a separate line on your screen. The program listing looked like this:

Program SCANNER was perfectly adequate for dividing a sentence into words
and writing them on the screen. But what if you had wanted, instead, to collect the
words in a list in the program and then, at a later time, have another part of the
program alphabetize the list, and then have another part write out the alphabetized
list. To accomplish this set of tasks you will need some new language elements.

We will introduce the new elements by stages. In the first stage, your program will
do nothing more than store each word in a list. We proceed to do that by modifying
program SCANNER. '

Boot-up Pascal, set the date, clear out the workfile, and enter the EDITOR, as
usual. After you have done these steps you will see the FILE? question on your
screen. Press RETURN as usual. '

ARRAYS 269

You saved SCANNER on your PROGRAM: diskette at the end of Session 9, using

“the Q W exit from the EDITOR described in Section 4-9. In Section 4-10 we showed

you a way to move a saved program back into your workfile. Here is a different way
that makes use of the Editor's C(OPY command. The new way moves the copy from
PROGRAM: directly into the EDITOR'’s workspace, not to the APPLEO: workfile.
At EDIT level type C F. The following message should appear on the screen:

*COPY?: FROM WHAT FILECMARKERyMARKERI?

Remove APPLEO: from the drive and replace it with your PROGRAM: diskette.
Type CTRL-Z. Respond to the question by typing PROGRAM:SCANNER and
pressing RETURN. After disk activity you should see the text of SCANNER on the
screen along with a prompt line warning you to put APPLEO: back inthedrive. Type
CTRL-A. Exchange APPLEO: for PROGRAM: and press RETURN. The job is done.
The new workspace copy will be moved out to the APPLEQ: workfile the next time
you take a Q U exit from the EDITOR. (You can read more about the EDITOR’s
C(OPY F(ROM FILE command in the Apple Pascal Operating System Reference
Manual.) ’

If you were successful, program SCANNER is now loaded in the workspace, and
its text is visible on your screen. (If for some reason SCANNER is not saved on your
PROGRAM: diskette, then enter INSERT mode and type it in again.)

Now, for the program changes: first, in the declaration section, you will add two
new variable names, COUNT and WORD, to the VAR block; second, you
will initialize COUNT to zero just ahead of the WHILE statement; and third, you will
delete the WRITELN statement and replace it with two new assignment statements.

Study the program text below and edit program SCANNER so that it is the same
as this version. Note that square brackets (CTRL-K and SHIFT-M), not parentheses,
appear after ARRAY in the VAR block.

PROGRAM SCANNER?

CONST
SPACE = * '’}

VAR
FHRASE ¢ STRINGS

BEGIN
WRITELN (‘TYFE IN A SENTENCE AND FRESS RETURN’)$
REAIILN (FHRASE) §
WRITELNS
FHRASE = CONCAT (FHRASE, SFACE)}

COUNT $= 07
WHILE LENGTH (FHRASE) > 1 DO
BEGIN

FIRST i= FOS (SPACE, FHRASE)S

DELETE (FHRASEY 1y FIF\'T)
END (x WHILE %)
END.

270 APPLE PASCAL

Check the program over carefully and run it. Type in any sentence you want.

There was no output because you deleted the WRITELN statement that
previously printed out the sentence; but you should be happy if the program
compiled correctly, indicating that the new version is legal Pascal. Now, let's see
what the new statements seem to be doing.

As before, the first four lines of the main BEGIN/END block receive user input of
a line of text, and put a space on the end of the line. The next statement assigns a
zero value to the new variable COUNT. After that the WHILE loop is executed
(unless the length of PHRASE is 1 or less).

Inside the compound statement of the WHILE loop there are four simple
statements. The first one finds the location of the first space character in PHRASE.
The next statement gets the current value of COUNT, adds one to it, and assigns the
resulting value back to COUNT. The third statement calls the COPY function, which
returns as a string value the part of PHRASE from the first character through the
character just before the first space. The string returned by COPY, therefore, is the
firstwordin PHRASE. In the new version of the program, this string value is assigned
to something new in Pascal: WORD [COUNT]. More about that later. The final
statement in the WHILE loop deletes from PHRASE all characters up to and
including the first space.

Then the program execution loops back to the beginning of the WHILE
statement. The length of PHRASE is again examined to see whether it contains more
words. If so, the steps above are repeated: COUNT is again incremented by one, and
the first word of the remaining part of PHRASE is assigned to WORD [COUNT] and
also deleted from PHRASE. The loop repeats while the length of PHRASE is greater
than one, and quits after that.

Most of the above analysis has been a review of things you learned in Session 9
about strings and the WHILE statement. The new thing here is this business of
incrementing COUNT and assigning a value to WORD [COUNT] each time through
the loop. What is going on? Try this experiment.

Go to the EDITOR, insert a semicolon after the END that closes the WHILE
statement, and add the following WRITELN statements after that. The last few lines
of your program should look like this:

ENII,

Now, run this version and type in a sentence with at least two words in it.

That result looks plausible, doesn't it? You see, on the screen just below the
sentence you typed, the first word, and under that, the second word. Recall that your
program assigned the first word to WORD [COUNT] when the value of COUNT was
equal to one, and it assigned the second word to WORD [COUNT] when COUNT
was equal to two. So it isn't terribly surprising that later, when the program wrote
WORD [1] and WORD [2] on the screen, you saw the string values that had been
assigned to WORD [COUNT] when COUNT was equal to one and two respectively.

ARRAYS 271

Here is another experiment. Edit your last two WRITELN calls to look like this:

ENDF Ok WHILE %)

END.

Run the program and type in a sentence with less than 20 words.

You may have gotten nothing, and you may have gotten ascreen full of garbage.
Why such unpredictable results? Did WORD [20] ever get assigned a value in your
program? What was the highest value that COUNT reached in your WHILE loop?

That experiment shows what happens if you try to use the value of an array
element before assigning any value to it. It is legal to do so, but the value is not
predictable. You saw this problem come up in Session 10.

Go to the EDITOR and change [20]to [200] in the last WRITELN call. Run the
result. Press the spacebar to do a warm reboot. Now change [200] to [-2] and run
that. Again, press the spacebar and reboot Pascal.

These numbers, -2 and 200, are outside the limits, 1..100, appearing after the
word ARRAY in the VAR block and they both lead to value range errors atruntime.
What does this experiment suggest about the meaning of 1..1007?

As a final experiment, delete [-2] so that the final WRITELN call looks like this:

Run this version. Did the entire list of words get written on your screen? Normally
you can put the name of a variable in the parameter list of a WRITELN call. You
declared WORD to be a variable, so what went wrong? Why was there a type error?

12-2 GRAMMAR RULES FOR ARRAY VARIABLES

In Pascal, WORD is an example of what is called an array variable. WORD [1],
WORD [2], etc. are called the elements or components of the array. The integer (or
integer expression) between square brackets is called the index or subscript of the
array. In the present case, WORD is an array of strings, since each one of its
elements is of type string.

Perhaps a diagram will help clarify things. Let's say that you run program
SCANNER and type in the sentence HOW SWEET IT IS. After the WHILE loop
finishes execution, the memory of the computer contains the following data in array
WORD:

272 APPLE PASCAL

ARRAY WORD
[HOW | SWEET [T IB |garbage...
WORD[1] WORD[2] WORD[3] WORD[4] WORD[5]

Each component of WORD contains a single string whose value is one of the words
in the sentence you typed in. WORDI5] contains “garbage”—i.e. whatever data
happened to be there when you ran the program—since there is no fifth word in the
sentence you typed in. Likewise, WORD[6] through WORD [100] contain garbage.
Finally, there are no locations in the computer's memory for WORDI0] or less or
WORD [101] or greater.

Like all other variables, an array variable has a name, a type, and a value. The
name and the type, as always, must be declared before use. This is usually done in
the VAR block of the program (or procedure, or function) where the variable is
defined. The value of an array variable, like all other variables, has to be assignedto
it, usually by means of assignment statements.

The meaning of the type of an array variable needs a closer look than we have
given it so far. In the present case you have dealt with an array whose components
were all strings. Later in this session, however, you will be using arrays whose
separate components are integers. So we need to be careful to distinguish between
the type of one array variable and another, even though all array variables are alike in
the sense that they represent ordered lists of data items.

The following terminology is often used when talking about array variables. We
say that WORD (or any other array variable) is of type ARRAY. But since WORD[5]
is of type STRING, we say that the component type of WORD is STRING. Usually all
of the above nomenclature is abbreviated. WORD, for example, is described simply
as a string array.

All array variables have another property that simple variables lack. It is called
the dimension of the array and tells the legal range of values for the array’s
subscripts. The dimension, like everything else, except value, must be declared
prior to use.

With all of this language under our belts, it is easy to explain the declaration line
for WORD. It looks like this:

WORIDI ¢ ARRAY L[1..1001 OF STRINGS

If you've followed all the above definitions, you'll have no difficulty with this verbal
translation: “WORD is an array variable. Its component type is string. Its subscriptis
an integer that can have any value from one to 100.” Note that the two periods (no
more, no fewer, and no spaces) between the one and the 100 imply a range of values.

ARRAYS 273

In Pascal this is called subrange notation since 1..100 is only part of the complete
range of integers. The legal range for integers is -32768 to +32767, or
-32768..32767 .

Incidentally, you may substitute an integer subrange legally anywhere in a
Pascal program that the word INTEGER would normally go. For example, the
following declaration

VAR
SMALL ¢ ~10..10%

would mean that SMALL is aninteger variable whose legal values will lie between
-10 and 10 inclusive. In that case, the statement

SMALL = 11

would result in a value range error message at run time.

Don't think, by the way, that the only word that can go after OF in the ARRAY
declaration is STRING. You can have an array of integers, an array of real numbers,
an array of characters, or an array of boolean values. You can also have an array of
scalar data that you define yourself. More than that, you can have an array of arrays.
Think of a table of five columns of real numbers, with 40 numbers in each column.
Each row is an array of five numbers. And the whole table is an array of 40 rows. The
following declaration would handle this case:

VAR
TABLE ¢ ARRAY [1..401 OF ARRAY [1..5]1 OF REAL}$

which is legally abbreviated as

VAR
TAELE ¢ ARRAY [1..40, 1,.51 OF REAL}

The assignment statement
TARLE L[23y 31 &= 877.90

would store 877.90 in the 23rd row and 3rd column of TABLE. In this case TABLE is
said to have two dimensions. According to this grammar rule, you can also have
arrays of three, four, five, or more dimensions. Note, however, that each array has

274 APPLE PASCAL

exactly one component type. A table that consists of a column of names and a
column of integers cannot be represented as a Pascal array. A different type
structure, called RECORD, applies to that case. (Session 13 is devoted to records.)

12-3 ALPHABETIZING A LIST OF WORDS

We continue now with our original task of alphabetizing the list of words that
program SCANNER has produced. As a first step, we need to be able to see the
whole list on the screen. You tried before to do that by the statement

WRITELN (WORID)

but you found that the built-in WRITELN procedure cannot handle array variables.
Evidently you will need to use a FOR loop and write each element of WORD
separately.

It you are still at the compile-time error message you got when you tried to write
out the array WORD, press E to get back to the EDITOR. Change the last lines of
your program to this:

END.,

You've probably recognized that the program needs one more change to make it
legal. You introduced a new variable, |, but did not declare it. Add | to the list of
integer variables in the VAR block. Then run the program.

Well, after all these changes the program output is almost exactly back where
program SCANNER left it in Session 9. This is another one of those cases where the
external behavior of the program stays about the same, but the internal details are
quite a bit different. The new version is an improvement over the old one because it
contains within it a new data structure, namely the array WORD. This means that the
data stored in WORD, whatever that data is, can be processed further by general
procedures that don’t know anything about the data contained in WORD, but do
know how to do various things with any array of string values.

The idea of separating a program into general procedural units that operate on
data, and then establishing communication between the units by passing data
Structures back and forth, is the essence of good computer programming. A
language like Pascal gives you a good opportunity to develop this strategy, since
Pascal provides both procedural subunits and a large assortment of data structuring
techniques.

ARRAYS 275

Towards that goal, let's reorganize program SCANNER to call attentiop to the
three procedural SL;mits that make it up. The first thing that SCANNER does is to get
input from the user. Next it processes the input. In the present case, the processing
consists of breaking the input sentence into separate yvords. Finally |.t performs
output, in this case, listing the words on the screen. The intent of the main program

would be clearer if it looked like this:

BEGIN
GETAFHRASE $
SCANS
SHOWLIST

END.

n get this result simply by first bracketing each group of existing statements
:/?t% C: BgEGIN/END, secoerd, preceding each new BEGIN by a PROCEDURE
heading, and finally, creating the new procedure call statemgnts. ‘
Use the editor to make your program look like the following. Pay attention to
indentation details. Note that the main program BEGIN has been moved below all
the procedures. Run the new version and confirm that it works as before.

276 APPLE PASCAL

PROGRAM SCANNER$

CONST
SFACE = 7 ‘§

VAR

WORD ¢ ARRAY [1. 1 OF STRINGS

WRITELN (‘TYPE IN A SENTENCE AND P .
READLN (FHRASE) $ PRESS RETURN‘)$
WRITELN

FHRASE ¢
COUNT t= 0
WHILE LENGTH (FHRASE)>1 DO
BEGIN

FIRST = FOS (SFACEs FHRASE)S$

COUNT t= COUNT + 13

WORD CCOUNTI $= COFY (FHRASE FIRST -

LELETE (FHRASE, 1, FIRST) 1r FIRST = 10

[LE %)

HRASEy SFACE)$

WRITELN (COUNT)$
FOR I = 1 TO COUNT DO
WRITELN (WORD LI1)
END{ (X SHOWLIST %)

N
END,

vnr;ti;aif;)i?sidtiz;tgestop for a n'1inute ahd compare this listing with the previous
ersion. W version looks more complex, and that
Functionally, it is identical to the previ i Rowener I It e
ally, previous one. The main point, however, is that th
new version is actually easier to understand, sin ’ el part
: , since each separate procedural
can be read and analyzed in terms of what i i . mindink
d talone does with the dat i i
Program modifications are also easi g
: : ' sier to make because their effects are easi
L%c;xztz ggcioldseﬁgfvy\l/.LllfS):rolefwanted better looking output, for example you V\:i[l:g
/LIST. Ityou needed a new variable there, you woulc'i simpl
a local VAR block within SHOWLIST and not worry whether another proce(?u);g::

ARRAYS 277

the same or a higher level happened to have a variable of the same name. Finally,
your procedure units in one program will become the frequently used starting points
for solving new programming problems. A good, well-debugged SCAN procedure,
for example, can be lifted and copied literally into another program. A good set of
procedures are your software tools for problem solving.

Now we turn to the task of alphabetizing our list of words. You will need a new
procedure (call it SORT) that will start with the WORD array produced by SCAN and
will rearrange the words in alphabetical order, returning the alphabetized list in the
same WORD array. The new BEGIN/END block of the program will look like this:

BEGIN
GETAFHRASE §
SCANS
SHOWL.IST
SORT S
SHOWLIST

END.

and will write the list of words both before and after sorting.

How do we sort lists? Books have been written about dozens of different sort
procedures, since so many computer applications depend upon having sorted data.
(It is a lot easier to find one name in a list of thousands if the list is sorted))
Unfortunately, the fastest sort procedures are not the quickest to write nor the
easiest to remember. The sort procedure we will discuss here is fairly easy to
remember and will do for lists of up to a hundred or so items.

In your problem, you want the components of WORD to be in alphabetical order.
That means that WORD [1] has to be earlier in the dictionary than WORD [2] or
WORD [3] or any other word in your array. The list initially produced by SCAN
probably will not be in dictionary order. A good way to start checking for correct
alphabetization is to compare WORD [1] with all the other words in the array. If
WORD [1] is closer to the beginning of the dictionary than any of the other wordsin
the array, there is nothing to do. But what if WORD [2] actually comes ahead of
WORD [1] in the dictionary? A simple thing to do would be to interchange the values
of WORD [1] and WORD [2]. That is, if WORD [1] was “the” and WORD [2] was
“poy”, then after the exchange, WORD [1] would be “boy” and WORD [2] would be
“the”. In effect, “boy” is the new candidate for the first word in the list.

The next step is to compare the value of WORD [1] with WORD [3]. If WORD [3]
comes earlier in the dictionary than WORD [1] exchange the two values; otherwise
do nothing. Then compare the latest value of WORD [1] with WORD [4]. After going
through the whole list, WORD [1] will contain the word that is alphabetically firstin
the list. Here is the germ of an idea for how to program this initial search for that
word.

FOR t= 2 TO COUNT DO
IF WORD [11 > WORD [J]1 THEN
exchange the values of WORD [11 and WORD CJ3]

Note that the greater than sign, >, compares two strings in dictionary order. The
expression between IF and THEN is true if WORD [1] comes later in the dictionary

278 APPLE PASCAL

than WORD [J]. It is false if WORD [1] comes earlier than WORD [J] orif the two
words are identical.

Now for the exchange operation. Your first impulse is probably to write

WORD C11 = WORD CJI1}
WORD [CJ1 ¢= WORD [C13]

but that won’t work, will it? If at the start WORD [1] contained “the”, and WORD [J]
contained “boy”, then the first statement would cause WORD [1] to contain “boy”.
The second statement would then assign “boy” to WORD [J], which is what it
already contained. The net result is that the word “the” is /ost.

The way out of this false start is to use a temporary variable, which we'll call
TEMP. Here is an improved cut at our sorting procedure:

FOR J i= 2 TO COUNT DO
IF WORD [C11 » WORD CJ1 THEN
BEGIN
TEMF ¢= WORD [C133%
WORD L11 ¢= WORD LJ1%
WORD CJ1 = TEMF
END (x IF x%)

This is a good start, even though it only succeeds in getting the alphabetically
first word in WORD [1]. That may not seem like much progress, but the rest is
really simple when you notice that the same procedure can be applied to WORD [2].
Furthermore, WORD [2] doesn't have to be compared to WORD [1], since we
know that WORD [1] is in order. Then, we can repeat the process with WORD [3],
again comparing WORD [3] only with WORD [4], WORD [5], etc., since the earlier
words are in order by that time.

Since we don’t want to have to type the above seven program lines again and
again, the answer must be to substitute a variable name for the number 1 everywhere

itis needed, and then to put the entire FOR loop inside another FOR loop. Here is a
first cut at that idea.

= 1 TO COUNT DO
= 1 4+ 1 TO COUNT DO
IF WORD CIJ » WORD [CJJ THEN
BEGIN
TEMF $= WORD .LIJ#
WORD CI1 = WORD CJ23
WORD CJ] = TEMF
END (X% IF %)

Notice that the J-loop always starts at | + 1. (If the J loop started at I, we'd begin by
comparing WORD [I] with itself.) Furthermore, there are three places where WORD
[1] is replaced by WORD [I]. There is still a bug in this procedure, however, and its
our friend OBOB—the Off-By-One Bug. What happens when | finally reaches

ARRAYS 279

COUNT in the outer loop? Then J will begin at COUNT + 1. But there is “garpage”
stored in WORD [COUNT + 1], since COUNT tells how many words were put in the
list by SCAN. .

The way out is to use COUNT - 1 for the upper limit of the I-loop. If you think fora
minute about the sort method, you'll see that there’s no need for | to ever equal
COUNT. The list is completely sorted if all but the last word are in order, and the |a§t
word is alphabetically greater than any of the sorted words in the list. That, indeed, is
the situation. . '

The final version of this program is given below. Note that in adding
PROCEDURE SORT we used a local variable | with the same name as a global
variable. We did not have to worry about that, since the | in SORT is unknown
elsewhere in the program.

PROGRAM DICTIONARY)

CONST
SFACE = 7 %

VAR
FHRASE ¢ STRING#
I+ COUNTs FIRST ¢ INTEGERS#
WORD ¢ ARRAY [1..1001 OF STRING#

PROCEDURE GETAFHRASE#

BEGIN i ~ ,
WRITELN (/TYFPE IN A SENTENCE AND' FRESS RETURN’)#
READLN (FHRASE) $§

WRITELN
END# (¥ GETAFHRASE %)

PROCEDURE SCAN#
BEGIN
FHRASE ¢= CONCAT (FHRASEs SFACE)$
COUNT = 0}
WHILE LENGTH (FHRASE):>1 DO
BEGIN
FIRST ¢= FOS (SPACEs, FHRASE)
COUNT = COUNT + 1%
WORD L[COUNTI $= COFY (FPHRASE, 1y FIRST - 1)3
DELETE (FHRASE» 1y FIRST)
END (X WHILE %)
END# (X GCAN X)

PROCEDURE SHOWLIST#
BEGIN
WRITELNS
WRITELN (COUNT)$
FOR I ¢= 1 TO COUNT DO
WRITELN (WORD CID)
END# (X SHOWLIST x)

280 APPLE PASCAL

BEGIN
GETAFHRASE $
SCANE

Note that we have changed the program name to DICTIONARY, since it now
c!oes more than just scan a sentence and divide it into words. Run this program a few
times and verify that it works as advertised. Use it to experiment with the meaning of
alphabetical order. For example, type the sentence “AA A ADAM AARDVARK”.
When you are finished, go to the EDITOR and use the Q W option to write the
program on your PROGRAM: diskette with the name DICTIONARY. (See Section
4-9 for details.) Then clear out the workfile.

12-4 TOP-DOWN DESIGN OF A CARD GAME

The following activities deal with elementary data structures and procedures that
can be used to represent a card game on the computer. You will quickly see
however, that these data structures have applications that extend far beyond thé
realm of games.

Earlier in this session you built a program up piece by piece. Then as it took
shape and grew in size and complexity, you reorganized it into elementary
procedural units. This design approach is sometimes called “bottom-up
F:Ievelogment”, since the detail (bottom-level) work comes first, and the organization
into major (top-level) units comes later. In the rest of this session we will reverse the
stratggy ang workina“top-down” fashion, specifying the main procedural units first
and'flllmg in the details later. Experts in problem-solving strategy disagree on the
merits of top-down versus bottom-up approaches. Our guessisthat people who are
good at problem solving tasks move back and forth, starting with a somewhat top-
level plan, then working on lower-level details, and using experience there to revise
the overall plan. In any event, it is a good idea to learn both approaches.

P

ARRAYS 281

In any card game simulation one must begin by issuing a fresh deck of cards—
exactly 52 in number, all different from one another. An appropriate data
representation of the deck is an integer array, which we might name DECK. The
value of each card can be represented by 52 distinct integers, perhaps in the
subrange 1..52. Let's give the name MAKEDECK to the procedure that issues the
initial deck, assigning unique values to the DECK array.

We will also need a procedure to shuffle the deck, so as to randomize the
sequence of cards. We will call it SHUFFLEDECK, and it must replace the initial
sequence of integers stored in the array DECK with arandom sequence of the same
integers.

It will be important during the development stage to have a procedure to write on
the screen the current sequence of cards in the deck, so that we can see whether
MAKEDECK and SHUFFLEDECK are working. Let's call it SHOWDECK.

Then we will want to deal a hand of cards to each of the players. For this we will
want an appropriate data structure to represent each card in each hand. A two-
dimensional array is called for, and a procedure called DEALHANDS will do this
task.

In a game like bridge, the play is considerably easier if the cards in each handare
sorted into suit and number order. So a SORTHANDS procedure is appropriate for
that task.

Our goal here is not to program an entire card game, but rather to see what the
first steps toward that goal would be. We will, therefore, stop our top-level planning
with the following main program:

BEGIN
MAKEDECK§
SHOWDECK #
SHUFFLEDECK$
SHOWDECK $
DEALHANDS$
SORTHANDS

END.

In addition to the BEGIN/END block, the main program needs to have CONST, VAR,
and PROCEDURE declarations. The number of cards in the deck and the number of
hands (players) will be constants for a given game. The list of global variables must
include the array representing the card deck and the array representing the cards in
each player’s hand. Finally, there must be procedure declarations for each one of
the procedures named in the BEGIN/END block.

A bare-bones program, therefore would look like this:

282 APPLE PASCAL

Enter this text into the cleared workfile. See what happens when you run it

d'dN,otice that there were no compiler errors and no run-time errors. CARDGAME
idn’t do much, but it ran because it is a legal Pascal program.

12-5 CARDGAME—FILLING IN THE DETAILS

Now we go to work on the details. A minimal
: : . program that actually ac i
something will need fuller versions of MAKEDECK and SHOWDE%K.C%Z?;E;?;

MAKEDECK istoii iquei X
do that, issue 52 unique integers to array DECK. A simple FOR loop should

Edit MAKEDECK to look like this:

PROCEDURE MAKEIDECK $

BEGIN

END# (% MAKEDECK %)

ARRAYS 283

A good starting point for SHOWDECK is found in the general structure of
MAKEDECK. Edit SHOWDECK to look like this:

PROCEDURE SHOWDECK$

END$ (% SHOWDECK X)

Run the program. Use CTRL-S to stop and start the display when you want to. It
may surprise you that the set of cards in the deck is listed twice. That is because the
main program calls SHOWDECK twice.

You now have aworking program, but the display of information is a bit too raw to
be meaningful. What, after all, is card number 20? It would be nice to have
SHOWDECK indicate the suit and number of each card. A reasonable convention
here would be that the first 13 integers are spades, the next 13 are hearts, the next 13
are diamonds, and the last 13 are clubs. With this definition, then, we can use MOD

~ and DIV to extract face number and suit from the raw integer. For example 20 DIV 13

is one, and 20 MOD 13 is seven. So, 20 corresponds to the seven of hearts. (A suit
value of zero is spades.) Here, then, is a first cut at improving SHOWDECK:

PROCEDURE SHOWDECK#
VAR
BEGIN
WRITELN#
FOR I $= 1 TO NUMCARDS DO

END$# (% SHOWDECK %)

We have used a CASE statement to select which of the four WRITELN calls to
make, depending upon the value of SUITNUMBER. FACENUMBER and SUITNUM-
BER have been added to the local VAR block. Comments have been added to the
ENDs to clarify the structure of the program.

Run this version, using CTRL-S from time to time to interrupt the output.

We are getting close; but there is now a new problem, and it looks like our friend
OBOB. Right after the “12 OF DIAMONDS” comes the “0 OF CLUBS". We're off by
one, again. Evidently FACENUMBER ranges between zero and 12, not one and 13.
That is because 13 MOD 13 and 26 MOD 13, etc., are equal to zero and not 13.

284 APPLE PASCAL

The problem actually goes deeper, since 13 DIV 13 is equal to one, not zero.
Therefore the SUITNUMBER of card number 12 is zero (spades), but for card
number 13 it is one (hearts). So the suit clicks over one card too soon and the face
number at that time goes from 12 to zero. Not only do we have a case of OBOB, we
have it in spades.

There are two approaches to solving this problem. One is to diddle around with
the MOD and DIV arithmetic, adding and subtracting ones until we get it right. The
other way is to recognize that MOD and DIV work best when we do our counting
from zero instead of one. Thus, for example, if the first thirteen cards were numbered
from zero to twelve, then MOD 13 would work fine and DIV 13 would also, even atthe
two ends of the range.

Let's choose the second approach and go back to change MAKEDECK as
follows:

PROCEDURE MAKEDECK

VAR
I ! INTEGERS#
BEGIN
FOR I := 1 TO NUMCARDS DO

END} (X MAKEDECK %)

Make this change and run the program.

Things are definitely better now, once you accepttheideathatthe “0OOF CLUBS”
is really the ace of clubs, and the “1 OF CLUBS”is really the deuce. Now, at least, we
get thirteen cards of each suit. The last remnant of OBOB can be eliminated by
adding one to FACENUMBER in SHOWDECK. Make this change and rerun.

To show you that there is usually more than one way to solve a programming
problem, let's look at SHOWDECK from a different perspective. Notice that the
CASE statement labels are consecutive numbers, not just arbitrary integers. In such
a situation you can usually get the effect of different cases by using another /ist
Structure. Suppose in our example that we had previously defined a string array
called SUIT, such that SUIT [0] = ‘SPADES’, SUIT [1] = '"HEARTS’, etc. Then in
SHOWDECK we could use SUITNUMBER as the subscript of array SUIT to get the
proper word written on the screen. SHOWDECK would look like this:

ARRAYS 285

PROCEDURE SHOWDECK#
VAR

Iy FACENUMBERs SUITNUMBER ! INTEGER#

BEGIN
WRITELNS
FOR I $= 1 TO NUMCARDS DO
BEGIN 4
FACENUMBER $= DECK CI1 MOD 13 + 14

SUITNUMBER $¢= DECK CIJ DIV 13#
M CENUMBERy 7 O

END (X FO
END} (X SHOWDECK %)

To make this method work, of course, we have to initialize SUIT to equal 'SPADES’,
'HEARTS’, etc. The following procedure does that.

In addition, the SUIT array needs to be declared globally. The main VAR block will
have to look like this:

VAR B
i ' S SERG
DECK ! ARRAY L[1..NUMCARDS] OF INTEGE)
HANDIS ¢ ARRAY L[1..NUMHANDS» 1..8;§EHANDJ OF INTEGER}$

Finally, the main BEGIN/END block must start with a call to INITIALIZE.

SHOWDECK #

SHUFFLEDECK$

SHOWDECK §

DEALHANDS §

SORTHANDS
END.

Make all the above changes. Let INITIALIZE be your first procedure. Run the
program.

286 APPLE PASCAL

Which of these two approaches is preferable? Each requires about the same
amount of typing. The CASE statement is a little more readable because all of the
information needed to understand how it works is located in one place, in
SHOWDECK. On the other hand, as this program grows in complexity there will
probably be other procedures that will need to use the SUIT array. So, it'satoss-up.

Let’s turn next to the problem of specifying the SHUFFLEDECK procedure. One
approach would be to simulate physical card shuffling. Another is to focus on the
goal, randomizing the deck, and come up with a simple computer procedure for
doing that. Since human shuffling is complex and, in fact, doesn’t always reach
randomness, the second approach looks better.

Here's an easy way to think about randomizing a deck of cards. Start with the
whole deck. Pick one of 52 cards at random. Put it aside. Then pick atrandom one of
the 51 remaining cards. Add it to the first one picked. Repeat until there are no more
cards.

This process looks easy to implement ina computer program, though there are a
few turns in the road. The first random selection process can be accomplished by
using a subscript equal to

1 + RANDOM MOD 52

which gives a random integer in the range one to 52. The second time around, 52
must go down to 51, and then to 50, etc. So we will need a FOR loop that begins to
look like this:

FOR I := NUMCARDS DOWNTO 1 DO
BEGIN
= 1 + RANDOM MOD I
FICK = DECK L[J14

The first time through the loop J will be an integer between one and 52, the second
time, between one and 51, etc. PICK, therefore, will be the card that has been
randomly picked from the remainder of the deck.

But what do we do with PICK each time through the loop? We could assignittoa
different array. But that would take up extra space in the computer's memory. There
is a simpler and more elegant solution. Our strategy will be to exchange PICK with
the last card in the current range of cards that we are picking from. The first time
through the loop, we will put the 52nd card in the deck at the place where PICK was
taken from—ij.e. at DECK [J]. Then we will put PICK in DECK [52]. The next time
through the loop | will equal 51, so J will be a random number between 1and51and
PICK will be one of the first 57 cards. Again, we will put the last card in the current
range, DECK [51] now, into DECK [J] and put PICK into DECK [51]. This process
can stop when | reaches 2, by the way. If | were to go all the way down to 1, then J
would equal 1 for all values of RANDOM. PICK would equal DECK [1], and then we
would exchange DECK [1] with itself. Since this step accomplishes nothing, we can
safely end the FOR loop at 2 instead of 1. Here is how the whole procedure will look:

ARRAYS 287

END# (% SHUFFLEDECK %)

You will also need a USES block now, since RANDOM is declared ip APPLESTUF:'.
Fill out PROCEDURE SHUFFLEDECK as above, and add the following USES block:

PROGRAM CARDGAME#

rogram and use CTRL-S to examine the shuffled deck.
ﬁl;/r:);hrir? thg program again, you'll see that the sequence of cards producec:)by
SHUFFLEDECK is always the same. That is true, as you probably remem e.r,
because RANDOM really is deterministic. The best way way to getamore r:alu:tlrc;
simulation is by randomizing the seed of the random number generator at_t es aof
of the program. You can do that by includinga RANDOMIZE call at the beginning
ITIALIZE procedure.
you/:s”;lou can seer,)the process of elaborating and extending program CARDG,:MEe
can go on foralotlonger; butwe willdrawittoa hgit here. The basic methpd we hav f
used is one of (1) deciding on a top-level description of the program in term; o]
procedures and data structures, (2) implemer:jtiggtthetprotceﬁ:res, and (3) making
ive refinements in the procedures and data structu -
suclgﬁist::: I;)elow is a complgte listing of CARDGAME iq its current state of
development. You may want to write it on your PROGRAM: diskette for later use as

the starting point for a game that you write.

PROGRAM CARDGAME$

USES
AFFLESTUFF $
CONST
NUMCARDS = 524
NUMHANDS = 43§
SIZEHAND = 134

288 APPLE PASCAL

VAR
DECK ¢ ARRAY [1..NUMCARDS] OF INTEGERS$

HANDS ! ARRAY [1..NUMHANDS» 1..SIZEHAND]1 OF INTEGER$

SUIT ¢ ARRAY [0..31 OF STRING [81%
PROCEDURE INITIALIZES$

BEGIN
SUIT L£O1 (= ‘SFADES’$
SUIT [£1] = ‘HEARTS’$
SUIT [£21 = ‘DIAMONDS’$
SUIT [L31 = ‘CLURS’

END$ (X INITIALIZE x)

PROCEDURE MAKEDECKS$

VAR
I ¢ INTEGERS#$

BEGIN

FOR I = 1 TO NUMCARDS DO
DECK [I3 =1 - 1
END3 (% MAKEDECK X)

PROCEDURE SHOWDECKS#

VAR

Iy FACENUMBERy SUITNUMRER ! INTEGER$
BEGIN

WRITELN?

FOR I = 1 TO NUMCARUS DO

BEGIN
FACENUMBER != DECK LCIJ MOD 13 + 14
SUITNUMBER != DECK CIJ DIV 134

WRITELN (FACENUMBERsy ‘ OF ‘» SUIT LCLSUITNUMBERI)

END (x FOR %)
END} (¥ SHOWDECK X)

PROCEDURE SHUFFLEDECKS$

VAR
Iy Jy FPICK ¢ INTEGER#
BEGIN
FOR I != NUMCARDS DOWNTO 2 DO
BEGIN

+= 1 + RANDOM MOD I¢
FICK ¢= DECK [CJ1%
DECK [J1 = DECK CIJ#
DECK [I1 = PICK
END (x FOR %)
END? (X% SHUFFLEDECK %)

PROCEDURE DEALHANDS$ BEGIN END$ (% DEALHANDS)
PROCEDURE SORTHANDS$ BEGIN END# (% SORTHANDS %)

ARRAYS 289

BEGIN
INITIALIZES
MAKEDECK $
SHOWDECK $
SHUFFLEDECK$
SHOWDECK #
DEALHANDS §
SORTHANDS

END.

12-6 ARRAYS AS VARIABLES AND PARAMETERS

In most of your work in this session you have been dealing with the separate
components of an array. These components are in every sense variables; their type
is the same as the component type that you declared in the array. For example,
DECK [3]is an integer variable in program CARDGAME.

All this attention to the components may have caused you to forget that it is aiso
correct to speak of the whole array DECK as a single variable and to use the name
that way. For example, if your VAR block contained the declaration

DECKy NEWDECK ¢ ARRAY L[1..3521 OF INTEGER

it would be legal (in Apple Pascal, though not all other Pascals) to use these
statements in the same program:

NEWDECK ¢= DECK#
IF DECK = NEWDECK THEN etc.

The first statement would assign all 52 components of DECK to NEWDECK. The
boolean expression in the second statement would be true if all 52 components of
DECK and NEWDECK were equal. The expression would be false if any
corresponding pair of components were unequal. Note, however, that the above
statements would be illegal if NEWDECK and DECK were not of exactly the same
type. For two arrays to be of the same type, they have to have the same component
type and the same dimensions.

Not every use of a whole array is legal. You already saw that you could not pass a
whole array to the built-in WRITELN procedure. You will also find, if you tryto dofit,
that you cannot define a function to be of type ARRAY. Apple Pascal permits only
functions that return simple data types: integers, characters, real numbers, boolean
values, and user-defined scalar values. Nor does Apple Pascal give you a way to
write a constant of type ARRAY. A few extensions of standard Pascal define both
array-valued constants and functions.

290 APPLE PASCAL

There is one especially important situation in which you will want to deal with a
whole array as a single object. In program CARDGAME your procedure
SHOWDECK was designed to display the contents of array DECK on the TV screen.
Suppose your program contained another array like DECK, called NEWDECK. How
could you use SHOWDECK to display the contents of NEWDECK? That would be
hard, because the text of SHOWDECK refers specifically to the array DECK. The
only way to get SHOWDECK to work with NEWDECK would be first to assign
NEWDECK to DECK and then call SHOWDECK.

There are two things wrong with that approach. First, the previous contents of
DECK would be lost. Second, it would require a good deal of computer time to
assign all the components of NEWDECK to DECK. The usual way out of this bind is
to parameterize procedure SHOWDECK so that it will display the contents of
whatever array is passed to SHOWDECK when it is called. You did this same thingin
Session 11, where procedure PLAY was written to play whatever music note was
passed to it. The music note was a simple variable, whereas DECK is an array; but
the idea is the same.

Let's do the obvious thing to SHOWDECK and see whether it works. Change the
heading of SHOWDECK to the following:

In the body of SHOWDECK, change DECK to CARDS in the first two assignment
statements. Finally, in the main program BEGIN/END block, change the two calls to
SHOWDECK to the following:

The intent of these changes should be clear to you. You have now written
SHOWDECK in terms of a parameter whose name is CARDS and whose type is
exactly the same as that of DECK. Then your main program calls SHOWDECK and
passes the data in DECK to it. Run the program and see what happens.

The compiler error message looks ominous. Why does compilation stop right
after the word ARRAY, with the message “identifier expected”? It looks as though
you may not be able to pass an array as a parameter to a procedure, right? Wrong,
fortunately. You can pass arrays, but the grammar rules of Pascal won't let you do it
the way you tried to. A simple set of changes will fix everything. Go back to the
EDITOR and add the following TYPE block after the CONST block in the main
declaration part of program CARDGAME:

ARRAYS 291

This declaration has simply given a name (i.e. an “identifier”) to the type of array you
are using for DECK and CARDS. Next change the declaration of DECK in the main
VAR block to this:

In effect, all that you have done by these changes is to substitute the name
CARDARRAY for the phrase ARRAY [1.NUMCARDS | OF INTEGER. It turns out
that this little change is enough to satisfy the grammar rules of Pascal, which does
not allow any reserved word to appear as a data type in the parameter list of a
procedure or function heading. ARRAY is a reserved word.

Run the new version and confirm that the program does exactly what it did in
Section 12-4.

Although the new version looks outwardly the same, the inner workings of
SHOWDECK are now quite different. SHOWDECK now works on any array (of type
CARDARRAY) that is passed to it. The main program passes DECK to it. You have
succeeded in parameterizing SHOWDECK.

12-7 VALUE PARAMETERS AND REFERENCE PARAMETERS

Let's see whether you can also parameterize SHUFFLEDECK in the same way
you did SHOWDECK. Change its heading to

Within the body of SHUFFLEDECK, change DECK to CARDS in all three
assignment statements. Finally, in the main program BEGIN/END block, change the
SHUFFLEDECK call to this:

Run the program.

Whoops! Something is wrong. The program compiled correctly and ran without
an error message. But, how come SHUFFLEDECK isn’t shuffling the cards any
more? The only thing you did was to parameterize it in exactly the same way that you
parameterized SHOWDECK. Why did it succeed in one case and not the other?

292 APPLE PASCAL

Itturns outthatone very, very tiny change will make SHUFFLEDECK work again.
Change the SHUFFLEDECK heading as follows:

Run this version of CARDGAME. As advertised, the addition of the word VAR ahead
of the parameter name seems to have fixed everything. But how?

Back in Session 9, when you were learning about the built-in DELETE procedure,
we told you there were two different ways to pass parameters to procedures: they
could be passed by value or by reference. These technical terms are not very
revealing. A better way to describe value parameters is one-way parameters.
Reference parameters are two-way parameters. A one-way or value parameter can
pass data into a procedure or function, but there is no way for the procedure or
function to change the data passed to it and then return the new data via a one-way
parameter. For that capability, you need a two-way or reference parameter.

With those ideas firmly in mind, you can see why SHOWDECK worked, and why
SHUFFLEDECK failed at first and then worked later. Notice that procedure
SHOWDECK never assigns any new values to the components of the array passed
as a paraimeter to it. So a one-way (value) parameter works fine with SHOWDECK.
On the other hand, SHUFFLEDECK does change the values of the components of
the array passed to it. SHUFFLEDECK must have a two-way (reference) parameter
to work properiy and return the shuffled list back to the caller. You converted the
parameter from one-way to two-way by inserting the word VAR ahead of the
parameter name. Whenever you do that with parameter name, it means that the
parameter can be used by the procedure both to receive data from the calling
program unit and to return data to the caller.

One final question remains: what was SHUFFLEDECK doing with the data
passed toitwhen you declared the parameter to be a one-way (value) parameter? To
answer that question you need to understand more about what goes on when you
pass a value parameter to a procedure. When that happens, the procedure first
makes a /ocal copy of all the one-way data sent to it. Then the procedure carries out
all its statements, using only the local copy of the data. When the procedure
completes its last statement, control goes back to the caller. So SHUFFLEDECK
copied all 52 components of DECK into a local array called CARDS. It then shuffled
the data in CARDS, but it did nothing to DECK. Thatis why SHUFFLEDECK seemed
to stop working. In fact, it simply had no way to communicate its results back to the
main program.

A procedure or function treats a reference parameter quite differently from a
value parameter. It does not start out by making a local copy of a reference
parameter. Instead, the procedure or function operates directly on the actual data
back in the calling program. Thus, when you finally changed CARDS into a
reference parameter, the call SHUFFLEDECK (DECK) caused that procedure to
oOperate on the data actually stored in DECK, not on a local copy of the data, and the
shuffling took place properly.

ARRAYS 293

You must use a reference parameter if data
is to be returned to the calling program unit.
You should usually use a value parameter when
there is only one-way sending of data into the
procedure.

There is one exception to the second rule above. Recall that a local copy is
always made for a value parameter. This takes both computer time and memory
space, especially if the parameter is an array. In applications that are time sensitive
or lack memory space, it may be necessary to use a reference parameter even when
there is to be one-way communication. However, it then becomes essential to avoid
assignment statements that accidentally change the value of the parameter inside
the procedure, since the value will also change outside.

SUMMARY

In this session you have used array variables to store and process ordered
collections of data. In the first activities you used a string array to handle a list of
words. Later you used an integer array for a list of numbers. In the process of
learning the grammar rules for declaring and using array variables, you also
developed useful procedures for sorting, shuffling and displaying the data stored in
arrays. You also saw examples of top-down and bottom-up programming strategies.
The following list reviews particular points of interest.

® Like all other variables, array variables have aname, a type, and a value. A part of
the type is the dimension of the array.

@ The name, dimension, and component type must all appear in a declaration of
the form

name : ARRAY [dimension] OF type

#® The usual spelling rules apply to the name. The dimension is in the form of a
subrange, such as 1980..1990, or a list of subranges separated by commas. Any
Pascal data type, such as INTEGER or STRING, can appear after the reserved
word OF. It defines the component type of the array.

@ The value of an array variable is the ordered set of elements that are its
components. Array variables, like all other variables, receive their values by
assignment.

294 APPLE PASCAL

Individual components of an array are referred to by their subscript, such as
WORD [3] or HAND [4, 10]. The subscript has to be of the same type as the
subrange dimension. Attempts to refer to array components with a subscript
outside that subrange lead to a value range error at run time.

Arrays cannot be passed to the WRITE and WRITELN procedures.

Functions and constants may not be of type array.

You saw how to write a simple procedure for sorting data.

You saw that the relational operator > when used with strings worked on the
basis of dictionary order.

You learned to use an integer array to represent a deck of cards.

You saw how to interpret an integer between zero and 51 in terms of the face
value and suit of a playing card.

You wrote a procedure to shuffle an array.
You passed an array as a parameter to a procedure.
You discovered the difference between value and reference parameters.

You used the EDITOR’s C(opy F(rom file command to move acopy of a file from
your PROGRAM: diskette into the workspace.

ARRAYS 295

Table 12.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in bold face. (Codes: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS; t = declared in TRANSCEND)

Reserved
Words

PROGRAM
USES
CONST
TYPE

ARRAY
SET
VAR
PROCEDURE
FUNCTION

BEGIN

FOR
TO
DOWNTO
DO

REPEAT
UNTIL

WHILE

IF
THEN
ELSE

CASE
OF

END

DIV
MOD

AND
OR
NOT
IN

QOO o2 o

Built-In
Procedures

DELETE
READ
READLN
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO
VIEWPORT

Built-In
Functions

Boolean
a BUTTON
a KEYPRESS

Char
CHR

Integer
LENGTH
ORD
POS
ROUND
TRUNC

a PADDLE

a RANDOM

Real
ABS
PWROFTEN
SQR
TAN
CcOSs
EXP
LN
LOG
SIN
SQRT

~ o+ o+ o+ .

String
CONCAT
COPY

Other
PRED
Succ

Other
Built-Ins

Constants

QOO aaaoaa

FALSE
TRUE
MAXINT
NONE
WHITE
BLACK
REVERSE
RADAR
BLACK1
GREEN
VIOLET
WHITE1
BLACK?2
ORANGE
BLUE
WHITE2

Types

g

BOOLEAN

CHAR

INTEGER

REAL

STRING
SCREENCOLOR

Units

APPLESTUFF
TRANSCEND
TURTLEGRAPHICS

296 APPLE PASCAL

QUESTIONS AND PROBLEMS

Questions 1 through 4 refer to the following program:

PROGRAM LISTSH

CONST
FIRST = 1%
LAST = 104

VAR
FRICEy COST ¢ ARRAY LFIRST..LASTI OF REALS$

BEGIN
FRICE L[21
FRICE [31
“etatementd3:
END.

+
.
+
+

iou
>
N R
- .

P

1. What are (a) the name, (b) the type, (c) the dimension, and (d) the component
type, of the variables declared in the VAR block?

2. For each of the statements below, say what would happen if it were used as
statement 3 in program LISTS.

a. WRITELN (PRICE)
b. WRITELN (PRICE [3])
c. WRITELN (PRICE [1])
d. WRITELN (PRICE [0])
e. PRICE := 2.79

f. PRICE [4] := PRICE [3]
g.PRICE [12] := 3.48

h. COST := PRICE

3. Explain what would happen in the above program if the first line of the CONST
block were changed to each of the following possibilities?

a. FIRST = -3;
b. FIRST = 3;

c. FIRST = 20;

ARRAYS 297

4. What words could be used in place of “REAL” in the VAR block of the above
program? (Ignore the statements in the BEGIN/END block.)

5. Write a PROCEDURE block that can be added to program CARDGAME. It
should take all the cards currently stored in DECK, reverse their order, and
store them back in DECK. The last card is switched to the first position, the
next to last to the second, and so on.

6. Examine PROCEDURE SORT in the DICTIONARY program. Explain in detaii
what would happen if the following changes were made to the text one at a time:

a. “"COUNT - 1" goes to “COUNT".
b. “l + 1" goes to “I".
c. Both of the above.

7. Examine PROCEDURE SHOWDECK in the CARDGAME program. What
changes would be needed there in order to get the names “ACE”, “DEUCE",
“THREE”, up through “KING” to be written on the screen in place of the
numerals one through 13? What other changes would be needed in the
program?

/
8. Write the DEALHANDS procedure for CARDGAME. It should cssign the data in
DECK to the two-dimensional array HANDS.

9. Write the SORTHANDS procedure for CARDGAME. It should sort each hand
separately.

10. Writea SHOWHANDS procedure to display on the screen each hand separately.

11. Consider the following program:

PROGRAM WHATISX:

VAR
X ¢ INTEGER#

PROCEDURE ARC
BEGIN
= 999
END?

BEGIN
X = 0%
ARCSH
WRITELN (X)
END,

298 APPLE PASCAL

a. What will appear on the screen if you run the program? Explain why.

b. Suppose you edit the program, moving the VAR block so that it appears
immediately after the procedure heading. Answer the question in part a.

c. Suppose you edit the original program so that a duplicate copy of the VAR
block appears immediately after the procedure heading. Answer the questionin
part a.

d. Suppose you start with the program as edited in part ¢ and then change both
occurrences of X to Y within procedure ABC. Answer the question in part a.

12. Consider the following program:

PROGRAM GUESSXS

VAR
X ¢ INTEGER?#

PROCEDURE AKC (X $ INTEGER)$
BEGIN
X t= 999
END# \

BEGIN
t= 0%
ABC (X)#
WRITELN (X)
END.

a. What will appear on the screen if you run the program? Explain why.

b. Suppose you edit the program, moving the VAR block so that it appears
immediately after the procedure heading. Answer the question in part a.

c. Suppose you edit the original program so that the word VAR appears just
before X in the procedure heading. Answer the question in part a.

d. Suppose you start with the program as edited in part ¢ and then change both
occurrences of X to Y within procedure ABC. Answer the question in part a.

13. Consider the statement

A LR1 = C

&

14.

15.

16.

17.

ARRAYS 299

a. List all of the data types discussed so far in this book that are legally possible
for B.

b. Do the same for C.

A program contains the following declarations:

TYPE
DAYOFWEEK = (MONs TUEs WEDs THU» FRI» SATs SUN)$

Write the declaration section and an initialization procedure so that the
statement

WRITE (DAYTIME LTUED)
will cause the string 'TUESDAY’ to be written on the screen. Similar WRITE

statements should work properly for the other days of the week.
Consider the following procedure call:

STATISTICS (LIST» AVG, STOEV)
where LIST is an array of integers defined in the calling program, and AVG and
STDEV are real numbers returned by the procedure to the main program.
a. For each variable, state whether it can be a value parameter.
b. State whether it can be a reference parameter.
If LIST in Question 15 contains 1000 numbers, discuss the relative costs and
benefits of passing it to STATISTICS as a value parameter compared with
passing it as a reference parameter.
The function sketched below is modeled after the POS function forastring. The
statement in the calling program

LOC = FOSITION (FATTERNs MYLIST: S5y 15)

causes a search of array MYLIST for the first occurrence of PATTERN, starting
at MYLIST [5] and ending with MYLIST [15]. If successful, POSITION returns
ne value ot the subscript. If not, it returns ~-MAXINT.

300 APPLE PASCAL

TYPE
STRINGARRAY = ARRAY 777 OF 777 3}

FUNCTION FOSITION (TARGET § 7?77 § LIST ¢ 7?7
START, 27 1 P77) ¢ 777 4
VAR
I #»%% 3
FOUND ¢ 7?77 ¢
BEGIN
FOSITION &= P77 3§
PP i= FALSES

I &= 777 3§

WHILE I <= FINISH AND 7?77 777 DO
BEGIN
IF %77 = 7?7 THEN
BEGIN

FOSITION 3= %77 §
FOUND = 797
END{} (X IF %)
I &= 777

END (X% WHILE X))
END$ (X FOSITION)

a. Your job is to replace each occurrence of ??? by the appropriate word,
number, or phrase so that the function will work correctly. Assume that TARGET
is of type STRING [20]. Assume that the dimension of LIST is from 1 through 50.

b. Could the identical function be used to search an array of integers foramatch
with a target integer? Explain.

SESSION

THIRTEEN

RECORDS AND FILES

Session 12 introduced you to the concept of an array—an ordered collection of
component data items. You dealt there with arrays of integers and arrays of strings.
Then, in Session 11 you learned about sets—another kind of collection of similar
data items. In this session you will explore records and files—two new data types
that, like the above, also represent collections of elementary data components. You
will see both how they are similar to and how they differ from the earlier types.

SESSION GOALS

Inthe first part of this session you will write programs that define and manipulate
data of type RECORD. You will see how to deal with whole records and with
individual components of a record. The WITH statement will allow you to abbreviate
component names. You will study a complex data structure that combines records
with arrays and strings.

In the latter part of the session you will write programs that put data into diskette
files and get data from them. You will see that files have sequential components and
that the components are all of the same Pascal type, which can be any legal type
(except FILE itself). You will see how to open and close diskette files and how to
input and output components. You will use the EOF function to tell when you reach
the end of a file. You will learn about files of characters called TEXT and
INTERACTIVE and will use READ, READLN, WRITE, and WRITELN with them.

You will see that these last four procedures, when used without a file name
parameter, refer to automatically opened files named INPUT and OUTPUT. You will
learn about a similar file named KEYBOARD.

Finally, you will use the R(emove and K(runch commands of the filer.

13-1 DEFINING A VARIABLE OF TYPE RECORD

In Session 12 you used a one-dimensional array of strings to represent a list of
words and another one-dimensional array of integers to represent a deck of cards.
You also saw how a table of real numbers could be represented by a two-
dimensional array of components of type REAL. We called your attention there to
the fact thatyou can use an array only in cases where all components are of the same
type. Fortunately, there are many situations in which that is true. But there are also
situations in which it is not true.

301

302 APPLE PASCAL

Consider, for example, the data that a company keeps about its employees or
that a college keeps about its students. In both cases the fundamental unit of data is
a collection of facts about an individual person. For each person, however, there are
many separate components of that data, and they are not all of the same type. A

partial list of components and their types might look like this:

Component Data

Last name
First name
Middle initial
ID number
Birth year
Full time
Pay rate

Type

STRING
STRING

CHAR

INTEGER
INTEGER
BOOLEAN
LONG INTEGER

As you can see, while it is convenient to think of this entire collection of

information as a single set of facts about one person, there is no way to put them all
in a single array, because of the component type differences. For that purpose we
need a new data type, and Pascal has one.

Let’'s begin with a slightly simpler example, and then build up from there.
Consider the way that dates are often written: 23 FEB 81, for example. We think of
the date as containing a useful unit of information; yet it is composed of three
elementary components, not all of the same type.

Component Data Type

Day INTEGER
Month STRING
Year INTEGER

The following program shows how Pascal makes it possible for you to handle
these three components separately while, at the same time, allowing you to pull
them all together under a single name. Study the following program carefully.

RECORDS AND FILES 303

Enter it into your cleared workfile, and run it.

Since there is no output statement in the program, you saw little activity on the
screen. The main point, however, is that the program compiled correctly and ran. It's
important new feature is found in the TYPE block, where the type DATE is defined to
be equal to a structure that begins with the word RECORD and ends with the word
END. Between those two reserved words there are three lines containing what looks
very much like an ordinary type declaration for a variable. Each line has the form

name : type

In the first such line the name is DAY and the type is 1..31, that is, an integer in the
subrange 1 to 31. The second name is MONTH and its type is a three-character
string. The third name is YEAR and its type is the 0..99 integer subrange.

The VAR block declares that a variable named TODAY is of type DATE. Then in
the main BEGIN/END block, we see a series of three assignment statements. The
variable names on the left side of each one have a composite form that you have not
seen before. The first part of the name is the same as the variable declared in the VAR
block. The second part, after a period, comes from the names in the RECORD/END
block in the TYPE declaration section. Judging by the types of the constants
appearing in the three assignment statements, it seems that this is the place in the
program where the three components of the variable TODAY are assigned values.

Carrying the experiment further, let's add another variable of type DATE and use
it to generate some output. Enter the following changes to the latter part of the
program.

304 APPLE PASCAL

BEGIN
TODAY . DAY = 23%
TODAY « MONTH

Run the new version.
Notice here that the new assignment statement

TOMORROW = TODAY$

has the effect of assigning all three components of TODAY to the corresponding
components of TOMORROW. That statement is legal because both variables are of
the same type. The next assignment statement

TOMORROW.DAY &= TOMORROW,.DAY + 13

shows that you can do arithmetic with the DAY component. That is true because the
DAY component is of type integer (more properly, a subrange of integers). In fact
the name TOMORROW.DAY could be used anywhere in a program that an integer
variable name or integer value is legal. Similarly, TOMORROW.MONTH could be
used whenever a string variable or value is legal.

Each component of a variable of type
RECORD has its own type and is subject to all
the rules that apply to that type.

You probably got tired of typing the record variable names, TODAY and
TOMORROW, again and again when you were dealing with the individual
components. The full name of a component often gets to be quite long and
cumbersome. Pascal gives you a way to get around that problem. Examine this new
version of the program. Make the changes and run the result.

RECORDS AND FILES 305

PROGRAM CALENDAR$

TYPE
DATE = RECORD
nAay ¢ 1..315%
MONTH ¢ STRING L3153
YEAR ¢ 0..99
END?

VAR
TODAYy TOMORROW ¢ DATES

BEGIN

This version of the program introduces the last Pascal statement type to be
covered inthis book. The WITH statement is different from all the others in thatit can
be used only with RECORD variables. The structure of the WITH statement is similar
to the WHILE and FOR statements:

WITH record-name DO statement

WITH and DO are reserved words. Record-name is the name of a variable of type
RECORD. While it is legal for statement to mean a simple statement, there is little
point in using a WITH statement unless you want it to apply to several other
statements. So in practice, statement almost always means a compound statement,
bracketed by BEGIN and END.

The effect of the WITH statement is very simple. It attaches the record-name to
any component-name within the body of the (compound) statement following the
word DO. In effect, the WITH statement allows you to specify the record variable
name only once and then to omit it within the scope of the WITH statement when
referring to each separate component of the record.

In your program you used the first WITH statement to specify TODAY as the
record variable name to be attached to DAY, MONTH, and YEAR in the compound
statement after the word DO. The second WITH statement specified TOMORROW
as the record variable name to be used with those same components. In your first

306 APPLE PASCAL

WITH statement, DAY stands for the TODAY.DAY component; but in the second
WITH statement it stands for TOMORROW.DAY.

You should recognize that the WITH statement is mainly a convenience feature
of Pascal. It does not allow you to do something new or different. It does save typing
and may, especially when used with files, improve the efficiency of running the
program.

13-2 GRAMMAR RULES FOR THE RECORD DATA TYPE

If you have had some experience using computers before you started to learn
Pascal, you probably thought that a record had something to do with data kept in a
file outside the computer. Personnel data, to return to the example that began this
session, is usually stored in such files; and people often refer to the information kept
about a single individual as making up one record in the file. Later in this session we
will discuss the whole question of files and the organization of data within a file.

The important fact to observe here is that in
Pascal, a record is a type of data. There is no
built-in link between records and files.

There are two main grammar rules that apply to records. The first tells how to
specify the type of a record variable. The second tells how to refer to awhole record
or to one of its components.

Recall that a variable gets its type in a VAR block by means of a phrase of this
form:

variable-name : type

You have already seen that type stands for such built-in names as INTEGER, CHAR,
STRING, REAL, or BOOLEAN. It also stands for a phrase such as

ARRAY [dimension] OF type
or

SET OF (constant-name-list)

or

SET OF subrange

RECORDS AND FILES 307

To include records as a Pascal data type, all that is necessary is to agree that type
can also stand for this new phrase:

RECORD field-specifier(s) END

The phrase begins with the reserved word RECORD, which is followed by one or
more field-specifiers (separated by semicolons) and ends with the reserved word
END. Each field-specifier, furthermore, has the form

field-name : type

Going back to program CALENDAR, you can confirm that the segment

RECORD
DAY ¢ 1..31%
MONTH ¢ STRING L3134
YEAR & 0..99

END3

conforms to this first grammar rule for specifying a record type. That segment could
be used anywhere in a program that a type is called for. In your program it was used
in a TYPE block to define the meaning of the type-name DATE. It would also be legal
to omit the TYPE block and instead use the above segmentdirectly in the VAR block:

VAR
TODAY» TOMORROW ¢ RECORD
DAY ¢ 1..31%
MONTH ¢ STRING [317
YEAR 0..99
END#

We don’t advise this latter approach. Programs are usually clearer when structured
types, such as RECORD and ARRAY and SET, are specified in a TYPE block and
given a type name. Furthermore, you will have to do that if you intend to define a
procedure that will be passed a value of one of these types. There is no other way to
declare parameter variables to be of these types, except by giving the type aname.

The second grammar rule for records tells how to refer to a single component ofa
variable of type RECORD. In such a situation, the form

variable-name.field-name

specifies one single component of the record. Variable-name is the name of a
variable of type RECORD and field-name is one of the names actually used in
defining that RECORD type. The type of that component is the same as the type of
the field-name.

308 APPLE PASCAL

In the previous programming example you found that

todag,month

was the correct name for the MONTH component of the TODAY record, and that its
type was STRING [3]. Similarly

tomorrow.vear

referred to the YEAR component of the TOMORROW record. Note that TODAY and
TOMORROW by themselves, without a period and a field-name, refer to complete
records. Note also that the field-name alone is used in statements within the scope
of a WITH statement. In such a situation the name following the word WITH is used
as the variable name that identifies the record.

If you've been especially observant you may have noticed that the rule for
specifying a record data type allows quite complex data structures. The reason for
this is because the definition of a field-specifier contains the word type. But
type stands not only for INTEGER, REAL, CHAR, etc., but also for structured types
such as ARRAY, SET, and even RECORD itself. Here are a few examples of complex
data structures that conform to the grammar rules that you have learned. As you will
see, they are designed to apply to the problem of dealing with a data base containing

thie names of all classes being taught in a school and the names and grades of all the
students in each class.

TYPE
GRANERECORD = RECORD
NAME ¢ STRING L2013
TESTSCORE ¢ ARRAY [1..10]1 OF INTEGER
END?
SCORELIST = ARRAY [1..501 OF GRANERECORD?
CLASSRECORD = RECORD
CLASSNAME ¢ STRING [81j
FERSON ¢ SCORELIST
END3
CLASSLIST = ARRAY L[1..2001 OF CLASSRECORI

VAR
STUDENT ¢ SCORE
CLABS ¢ CLASS

With all these declarations it is possible to see that

STUDENT

RECORDS AND FILES 309

is an ARRAY variable containing all the student data for one class, while

STUDENT 131

is a RECORD variable containing the data for the 13th student in the class, and that

STULENT 131 « NAME

is a STRING variable containing the name of the 13th student, and that

STUDENT L1371 + TESTSCORE

is an ARRAY variable containing all the 13th student’s grades, and that

GTUDENT L1371 . TESTSCORE L41

is an INTEGER variable containing the 13th student’s grade on the fqurth test.

If you have any doubts about these interpretations, this is a good time to.st.op,
reread the preceding paragraph, and review the grammar rules fqr specifying
RECORD and ARRAY types in Pascal. When you are comfortable with the above

i ion you will probably be ready for the following conclusions:
’ scl;:l:rssst it s);ould bepclear fryom looking at the VAR block that CLASS is an ARRAY
variable. It contains all student names, test scores, and course names for all classes
in a school. CLASS is the whole data base. You can also tell that

CLASS L7311

is a RECORD variable containing the course name, student names, and test scores
for the 73rd class. Looking more closely,

CLASS [731 .+ CLASSNAME

is a STRING variable containing the course name of the 73rd class, while

310 APPLE PASCAL

CLASS [731 + FPERSON

is an ARRAY variable containing the names and grades of all the students in the 73rd
class. From here on it's easy, since we are reviewing the previous analysis. As
before,

CLASS L7731 . PERSON L13]

is a RECORD variable containing the names and grades of the 13th student in the
73rd class, and

CLASS L7310 o FERSON [131 . NAME

is a STRING variable containing the name of that student, while

CLASS L7310 o FERSON L1311 . TESTSCORE

is an integer ARRAY containing the test scores of the 13th student in the 73rd class.
Finally, at the lowest level of detail,

CLABS [731 . FERSON C131 . TESTSCORE L[4

is an INTEGER variable containing the fourth test score of the 13th student in the
73rd class at the school.

The main point to notice here is that
Pascal’s rules for defining data types allow you
to organize the data needed for a given
computer application and to manipulate the
data at whatever level of detail you want in
various parts of the program.

RECORDS AND FILES 311

If you need to pass the whole collection of school data to a procedure, for example,
you need only to use the variable CLASS in the parameter list. At the opposite
extreme, the statement

CLABS LI o PERSON [J1 . TESTSCORE [K1 $= 93

assigns a score of 93 to the Kth grade of the Jth student in the Ith class.

If you are a beginner at Pascal it will be some time before you are writing
programs that deal with data of this degree of complexity. Nevertheless, knowing
that these features are present in Pascal will help you to evaluate the language and
its potential to grow with your needs to handle problems that involve organizing and
manipulating large amounts of data. Much of the current enthusiasm for Pascal
comes from the rich set of data structures that it gives to a programmer by allowing
combinations of RECORD, ARRAY, and simple data types. The above example
contains arrays of records, records of arrays, and arrays of records of arrays. In fact,
the variable CLASS is an array of records of arrays of records of arrays, though
saying that doesn’t really help you to understand what CLASS is. For that, you need
to study the TYPE block and look at examples, justas you have done in this section.

Pascal offers even more flexibility in defining records than you have seen so far.
In all of the above examples each record had a fixed format. For example, all
variables of type DATE in program CALENDAR contained exactly one string and
two integer components. It is possible to define a record data type that allows
different variables of that type to have distinct components. Discussion of that
particular wrinkle in the Pascal fabric would take us far afield. Since this is a
beginners book, we will leave that to the more advanced texts listed at the end of this
book.

13-3 DEFINING A VARIABLE OF TYPE FILE

Inthe remainder of this session you will be experimenting with a very special data
type called FILE. Among all Pascal data types, FILE is unique. The value of a variable
of type FILE is determined by data that is located outside the main memory of the
computer. The value of every other type of variable is determined by data in the main
memory. This fact imposes many restrictions on what one can do with the FILE
variables. For example, although it is legal to put the name of any other type of
variable on either side of an assignment statement, this is illegal for FILE variables.
You cannot assign a FILE value to a FILE variable. (Before long you will see how
FILE variables get their values.) Nor can a FILE be acomponent type of an ARRAY or
RECORD type.

Despite these restrictions, you will soon discover that the FILE variable is
Pascal’s principal way of moving data into the main memory from the keyboard, out
from the main memory to the screen, and in both directions to and from diskettes.
Our main focus now will be on data storage on diskettes and data retrieval from
diskettes, but you should keep in mind the fact that Pascal receives data from your
keyboard and sends data to your TV screen in exactly the same way that it deals with
data on diskettes. More about that later.

312 APPLE PASCAL

Let's see how to write a program that does nothing more than put the numbers
from 1 to 100 into the disk file APPLEO:NUMBER.DATA
Clear out your workfile. Type the following program into your workspace.

Run the above program. There should be no surprises here as you see the numbers
appear on your screen. The following program shows all the changgs needed to
convertthe previous version to one that sends its output to the diskette instead of the
screen.

FROGRAM FILEILT#

VAR
COMFONENT ¢ INTEGER$
DATAFILE ! FILE OF INTEGER?

Enter all of the changes. Use SHIFT-N to type the circumflex sign () in the
assignment statement. Run the program.

If you saw no compile-time or run-time errors, the program seemed to ha\{e
worked. (If you got errors, follow instructions to get back to the EDITOR and fix
them.) You won’t be sure that all is well until you try to get the data back from the
diskette, of course, but you can, at least, check the directory of APPLEO:. Enter the
FILER, type L, the diskette name, and press RETURN. Towards the bottom of the list
you should find a new file name, NUMBER.DATA, with a length of one block. That
looks good.

Before trying to get the data back, let's have a closer look at the changes you
made in your program. Re-enter the EDITOR.

The first change was in the VAR block, where you added the new line

RECORDS AND FILES 313

DATAFTILE ¢ FILE OF INTEGEFR$

You know from the grammar rules for the VAR block that the word on the left side of
the colon must be the name of a variable and that the phrase on the right side must
be a data type. This line, therefore, defines DATAFILE tobeavariable of type FILE, a
data type that you have not worked with before. Notice also that the complete
phrase, FILE OF INTEGER, suggests that DATAFILE has many components and
that each one is of component type INTEGER. The name DATAFILE refers to the
whole collection of data. We have not yet described how to refer to a single
component of DATAFILE.

Like a variable of any other type, a variable of type FILE represents data. What
can be done with that data will depend upon the operations and the procedures that
are available for that data type. For INTEGER data, arithmetic operations are
available as well as functions such as SQR and ABS. For STRING data there are
procedures for concatenation and deletion. For SCREENCOLOR data there are
procedures for drawing lines in several different colors. The question, then, is this:
what operations and procedures are available for data of type FILE?

For answers, look at the text of program FILEIT. You will see three places where
variables of type DATAFILE appear in parameter lists of procedure calls. You will
also see the name DATAFILE A used in an assignment operation. When you
understand what is happening in each of these four statements, you will understand
most of what there is to know about FILE data.

The first procedure call in the program is

REWRITE (DATAFILEs ‘AFFLEO!NUMEER.DATA’)$

and its effect is to open a file that will receive output. REWRITE takes care of one or
two bookeeping matters and finally concludes by identifying the program variable
named DATAFILE with the specific disk file called APPLEO:NUMBER.DATA. You
should not get the idea that any data in the computer is moved to the diskette at this
time. The data isn’'t even defined yet. Furthermore, in most applications there would
not be enough room in the computer’s main memory to hold all the data at once.
That, in fact, is one of the chief reasons for using disk files.
Within the body of the FOR statement this assignment statement appears:

DATAFILE™ = COMFONENT;

Whatever DATAFILEA is, it has to be a variable name (since it is the target of an
assignment statement) and it has to be of type INTEGER (since a type-mismatch
error would have occurred otherwise). Looking back at the VAR block, you would
probably guess the right answer: DATAFILE / is the name of one component of
DATAFILE. The spelling rule for components ofan ARRAY variable requires square

314 APPLE PASCAL

brackets after the variable name. The spelling rule for components of a RECORD
variable requires a period and field name after the variable name. In the same
fashion, the spelling rule for a component of a FILE variable requires a circumflex
(SHIFT-N) after the variable name.

The assignment statement in your program, therefore, is assigning the current
value of COMPONENT to one component of DATAFILE. “Which component?”, you
might ask. The spelling rule for FILE components, unlike that for RECORD and
ARRAY components, doesn’tallow you to distinguish one component from another.
The reason for this comes out of a fundamental fact about a variable of type FILE.

At any one time, only one component of a
FILE variable is available for direct manipula-
tion by a Pascal program. The name of that
component is the name of the FILE variable,
followed immediately by a circumflex
(SHIFT-N).

The next statement in your program

FUT (DATAFILE)

is a procedure call in which the name of your FILE variable is passed as a parameter
to PUT. Its effect is very simple. It puts a copy of the data currently in DATAFILE /

into the disk file APPLEO:NUMBER.DATA. The data goes on the diskette in a
sequential fashion, starting at the beginning location established originally by the
REWRITE procedure, which opened the disk file. Each successive PUT operation
puts a copy of the current value of DATAFILE /\ into the next sequential location on
the diskette. (Note that PUT does not change the value of DATAFILEA.)

Once you have opened a file, therefore, all that you have to do to put sequential
dataintoitis, first, to assign the value of the data to the file variable component, and,
second, to carry out the PUT operation on that file variable. Your program FILEIT,
therefore, writes the numbers from 1 to 100 as successive integer values in the open
disk file APPLEO:NUMBER.DATA.

The final statement in the program,

CLOSE (DATAFILEy LOCK)

does exactly what it says. After execution, the variable called DATAFILE is no longer
associated with your diskette file or any other file. DATAFILE is closed. An attempt
to execute a PUT statement on a closed file is illegal. Failure to close a file before a

RECORDS AND FILES 315

program finishes can leave the file in an indeterminate state. Always close any open
files before the program comes to an end.

The word LOCK in the CLOSE parameter list is an instruction to make the new
file permanent in the directory of APPLEO: with the name NUMBER.DATA. It also
puts an end-of-file mark just after the last file component that was put on the disk. If
you had used the word NORMAL instead of LOCK, or had not put any word after
DATAFILE, the CLOSE procedure would have deleted the new file from the
directory. (Such a temporary file, often called a scratch file, can be used for
intermediate storage of amounts of data too big to fit in the main memory.”

Before attempting to get the data back, let's create another data file of a different
type. Change your program as follows.

PROGRAM FILEITS$

BEG

DATAFILE™ = COMFONENTS$
FUT (DATAFILE)
END§ (x FOR %)
CLOSE (DATAFILEy LOCK)
END.

Note that CHAR has replaced INTEGER in two places in the VAR block. DATAFILE
is now a file of characters. Note also that the disk file name is now LETTER.DATA.
Finally, the FOR statement now goes from 'A’ to'Z’. Note, on the other hand, thatthe
internal name, DATAFILE, is the same as before, and that the two statements that
define a component of DATAFILE and put it on the diskette are also unchanged. The
strategy for outputting file components of type CHAR is exactly the same as for file
components of type INTEGER or any other component type, however complex.
Run the new version. Then go to the FILER and check the APPLEO: directory
again. You should find that LETTER.DATA has joined NUMBER.DATA there.

13-4 GETTING DATA OUT OF DISK FILES

Now that you have put data items into files, let's see how to get them back out.
We'll start with LETTER.DATA. The changes to your program are fairly simple.
Return to the EDITOR. Change the program so that it looks like this:

316 APPLE PASCAL

PROGRAM FILEITS

VAR
I ¢ INTEGERG#
COMFONENT ¢ CHARS
DATAFILE ¢ FILE OF CHARS$

BEGIN
RESET (DATAFILE
FOR I i= 110 2

BEGIN
COMPONENT = DATAFILE®}
GET (DATAFILE)§
WRITELN (COMFONENT)
END} (X FOR X)
CLOSE (DATAFILE)
END.

 'AFFPLEOILETTER.DATA) §
no

Run the changed version. Then return to the EDITOR.
Your new program has the following changes.

1. A call to RESET replaces the call to REWRITE.
2. The FOR loop counts from 1 to 26, indexed by the new integer variable |.

3. The assignment statement
COMFONENT = DATAFILE™

reverses the original order of the variable names.
4. GET has replaced PUT.

5. We have added aWRITELN call, to see the current value of COMPONENT on the
TV screen.

RESET, as you may have guessed, opens the APPLEQ: diskette file LETTER.DA-
TA and identifies it with your Pascal variable DATAFILE. The main difference
between RESET and REWRITE is that RESET can only be used with existing disk
files. RESET, therefore, is the appropriate one to use when opening a file from which
you want to get input, while REWRITE is the only choice for creating a new disk file
and opening it for output. (REWRITE is usually preferable as well when you want to
send new data to an existing disk file.)

After opening LETTER.DATA for input, the program repeats 26 times the
following set of statements:

RECORDS AND FILES 317

COMFONENT &= DATAFILE™}
GET (DATAFILE)
WRITELN (COMFONENT)

The GET procedure is the inverse of the PUT procedure: PUT sends a copy of
DATAFILEN to the current location on the diskette: GET receives a copy of the data
at the current location on the diskette and assigns it to DATAFILE/. GET and PUT
are the elementary file input and output (1/0) procedures in Pascal.

While studying this new version of your program, you should note carefully the
order of statementsin the FOR loop. Your assignment statement precedes your GET
call. This may seem strange: how did DATAFILE A\ get its value the first time around
the loop? The answer points up another difference between RESET and REWRITE.
RESET normally does an automatic GET after it opens the file. (There is one
exception to this rule, and we’'ll come to it in Section 13-9.) REWRITE does notdo a
GET. Inyour current program, therefore, the RESET procedure moves a copy of the
first component ('A’) of the file into the computer, where it can be manipulated via
the name DATAFILEA. That is why the assignment statement works the first time
around the loop. (If you're wondering why RESET does an automatic GET, you'll
soon see.)

Finally, note that the parameter list for CLOSE contains only the name of the file
variable. The word LOCK could have been included, but it has no effect on a file that
has been opened by means of the RESET procedure.

It would be a simple matter to edit your program to input all the numbers in
NUMBER.DATA, but we’'ll leave that as a problem for you to do at the end of this
session.

13-5 FILE INPUT USING THE EOF FUNCTION

You have seen that the RESET call does an automatic GET. Then your program'’s
FOR loop did 26 more GETs, for a total of 27. But there were only 26 letters in the disk
file. What happened on the 27th time that

GET (DATAFILE)

was carried out? What was the value of DATAFILE /\ after that?
The following program variation will introduce you to a new boolean function
that will reveal more of what is going on.

318 APPLE PASCAL

PROGRAM FILEITS#

VAR
COMFONENT ¢ CHARS$
UDATAFILE ¢ FILE OF CHARS#

(DATAFILEs “AFFLEOILETTER.DATA’) S
E NOT EOF (DATAFILE) DO

COMPONENT = DATAFILE™$
GET (DATAFILE)
WRITELN (COMFONENT)
END? (X WHILE %)
CLOSE (DATAFTLE)

The main change is the replacement of the FOR loop with a similar WHILE loop. The
body of the two loops remains the same. In addition, | has been removed from the
VAR block. Make the changes and run the program.

The new version works, but how? Recalling the rules for the WHILE statement,
you will remember that the body of the loop is executed as long as the expression
after WHILE remains true. For NOT EOF (DATAFILE) to be true, EOF (DATAFILE)
must be false. EOF stands for “end of file”. As you have seen by running the program
successfully, EOF was false at first and remained false until the last file component
was input.

The EOF function normally returns a value of false. If any GET attempts to input
data past the end-of-file marker (put there when the file was created), then EOF
returns a true value, and the value of DATAFILE/\ becomes undefined. Your new
input program makes use of this behavior of the EOF function in the WHILE
statement to decide when to stop input. This method of using WHILE NOT EOF
when getting input from a file is usually better than using a counting loop, since you
do not need to know in advance how many components are in the file.

This application is a good opportunity to show why Pascal has both a WHILE
statement and a REPEAT statement. You might have been tempted to write your file
input loop like this:

REFEAT
COMFONENT &= DATAFILE™$
GET (DATAFILE) S
WRITELN (COMFONENT)
UNTIL EOF (DATAFILE)

In fact, this approach would have worked in the present case. Butif you had used itin
a general file input program, sooner or later it would have gotten you in trouble.

Recall that the body of a REPEAT loop is always done once. What would have
happened if the data file had been completely empty? Then the first thing in the file

RECORDS AND FILES 319

would be the end-of-file marker. As soon as the RESET procedure was carried out
along with its automatic GET, EOF would have become true. But the REPEAT
statement would not examine EOF until the loop was done once. In the meantime,
the program would be treating DATAFILE A as though it had meaningful data,
which would not be true. Use of the WHILE statement avoids this problem
altogether. You should note also that neither a REPEAT loop nor a WHILE loop
would work properly if RESET failed to do a GET initially. Thatis why RESET works
the way it does.

13-6 GRAMMAR RULES FOR THE FILE DATA TYPE

In previous parts of this book you have seen that the word type in Pascal stood for
words, such as INTEGER, CHAR, REAL, BOOLEAN, and STRING, and also for
phrases, such as SET OF 'A’.."Z’and ARRAY [1..10] OF REAL. In the early part of this
session, you saw that 'type’ also stands for very complex RECORD structures. Now
you see that 'type’ must also include a new FILE phrase of the following form

FILE OF type

FILE and OF are both reserved words. As before type means everything you have
seen it stand for before. The one thing it may not stand for is another FILE type: you
may not have a file of files. The following, however, are all legal:

FILE OF CHAR
FILE OF REAL
FILE OF [O..15]
FILE OF SET OF CHAR
FILE OF ARRAY [1..3y 1..101 OF INTEGER
FILE OF RECORD
Iy Jvy K ¢ INTEGER?
ST ¢ ARRAY [0..31 OF CHAR
END

The component type or base type of a FILE type is defined by the word or phrase
after the phrase FILE OF in the definition of the FILE type. For example, a FILE
variable defined by the next to last example above would have a component whose
type was ARRAY [1..3, 1..10] OF INTEGER. If the name of the variable was
LISTFILE, then LISTFILE A would refer to one entire two-dimensional array in the
“file of arrays”. Likewise, LISTFILE /\ [2, 5] would refer to one of the integers in that
array. Bear in mind that however complicated the component type may be, one
entire component is always available to your program after it has opened the file. If
the component is a structured type such as an ARRAY or a RECORD, all its sub-
components are available.

320 APPLE PASCAL

13-7 TEXT FILES, READ, AND WRITE

Return to the EDITOR. Change the declaration of DATAFILE to read:

UATAFILE & TEXT

Run the program. The fact that the program runs and produces the same result as
before tells you that TEXT is a legal file type, and that it is a synonym for FILE OF
CHAR.

Now edit your program again as follows:

FROGRAM FILEITS

VAR
COMFONENT ¢ CHARS
DATAFILE ¢ TEXTS

BEGIN
RESET (DATAFILE, “AFFLEOILETTER.DATAY) S
WHILE NOT EOF (DATAFILE) DO
BEGIN
READ (UATAFILE, COMPONENT) S
WRITELN (COMFONENT)
ENDF (X WHILE
CLOSE (DATAFTLE)
END .

Run it. Identical results this time suggest that the READ procedure is
synonymous with the pair of statements

COMPONENT ¢= DATAFILE™$
GET (DATAFILE) S

This idea turns out to be true whenever DATAFILE is of type TEXT (or FILE OF
CHAR) and COMPONENT is of type CHAR.

Let's explore TEXT files a bit further. Go to the FILER and type E, for E(xtended
List Directory. Reading down the rightmost column, notice that one of thefiles in the
directory, SYSTEM.WRK.TEXT, is identified by the word TEXT. Perhaps you could
use your present program to get input from that file and write its contents on the
screen. Return to the EDITOR and change the RESET call as follows:

RECORDS AND FILES 321

RESET (UATAFILEs, ‘AFFLEOISYSTEM.WRK, TEXT)$

Run the program.

Indeed, you can use your program to read this or any other TEXT file, one
character at a time. Actually, you can do a lot better than that. Change your program
again so that it looks like this:

PROGRAM FILEITS#

VAR
COMFONENT ¢ STRING$
DATAFILE ¢ TEXT#

BEGIN
RESET (DATAFILEs ‘AFFLEO!SYSTEM.WRK.TEXT’)#
WHILE NOT EOF (DATAFILE) DO
BEGIN
READLN (DATAFILE, COMPONENT)S
WRITELN (COMFONENT)
END7 (X WHILE X)
CLOSE (DATAFILE)
END.

You changed the type of COMPONENT from CHAR to STRING, and you changed
READ to READLN. Run the program.

No, you're not back in the EDITOR. The final version of your program has told
you two very important facts about TEXT files and the READLN procedure. Itis clear
that READLN is reading one “line” at a time out of SYSTEM.WRK.TEXT and storing
the characters in COMPONENT, now a string variable. That must mean that this
particular TEXT file contains end-of-line markers as well as an end-of-file marker.
Such is the case. In fact, Pascal has an EOLN function that behaves similarly to EOF.
It is unlikely that you will have much need for it, however, since the READLN
procedure automatically reads everything until the end-of-line marker.

Now let's apply this final version of the program to your LETTER.DATA file.
Return to the EDITOR. Change the RESET parameter list back to this:

RESET (DATAFILE, ‘AFFLEOILETTER.DATA’)S

Run the program.

Since you did not put any end-of-line markers in LETTER.DATA when you
created it, READLN treats the whole file as asingle line, using the end-of-file marker
as equivalent to end-of-line. (This would only work for a short file, since the
maximum string length allowed in Apple Pascal is 255 characters.

322 APPLE PASCAL

The thing to note here is that the READLN procedure, with a file name and a
string variable as parameters, gives you a completely general way to getinput from a
TEXT file that is divided into separate lines. The final version of your program is a
prototype for this situation.

As the final experiment in this section, let's see how to put those end-of-line
markers into a TEXT file. We'll do this by modifying your program to make a second
disk copy of SYSTEM.WRK.TEXT. To do that, you have to open a new file for output.
Then you have to send each line of output to that file. Finally, you have to close the
file and LOCK it. Edit your program as follows:

PROGRAM FILEITS#

VAR

WHILE NOT EOF
BEGIN

END.,

Note that the only necessary change in the WRITELN call was the addition of the file
variable, OUTFILE, to the parameter list. Run the program.

The lack of output on the screen suggests that WRITELN sent its output to
OUTFILE, which was opened in the REWRITE call as APPLEQ:COPY. Go to the
FILER and do an E(xtended List Directory. Note, indeed, that you now have a new
APPLEQ: file named COPY.DATA. It contains, line for line, all of the text that was in
SYSTEM.WRK.TEXT, including end-of-line markers created by the WRITELN calls.
(The suffix “.DATA” is added to all disk file names created by the REWRITE
procedure, unless you have already included the suffix.)

To understand WRITELN in detail, it is easier to start with the WRITE procedure.
If OUTFILE is a file variable of type TEXT and CH is a variable of type CHAR, then

WRITE C(OUTFILEs CH)

is exactly equivalent to this sequence:

RECORDS AND FILES 323

OUTFILE™ $= CH#
PUT (OUTFILE)

Similarly, if ST is a variable of type STRING, then

WRITE (OUTFILEs ST)

is exactly equivalent to this loop:

FOR 1 = 1 TO LENGTH (8T) DO
BEGIN
OUTFILE™ ¢= ST LIdé
FUT (OUTFILE)
END

WRITELN is just like WRITE in the above examples, except that it puts an end-of-line
marker into the file after the last character output.

WRITE, WRITELN, READ, and READLN, when called with a file variable as the
first parameter in the parameter list, are straightforward generalizations of the same
procedures you have been using all along to send output to the screen and get input
from the keyboard. The parameter listin all situations may contain several variables,
and their types may be CHAR, STRING, INTEGER or REAL. WRITE and WRITELN
convert the data, whatever its initial type, into a sequence of characters, suitable to
be PUT into a TEXT file. Similarly, READ and READLN will GET a sequence of
characters out of a TEXT file and will attempt to convert them into data of types that
match the variables in the parameter list. Conversion won’t succeed if the characters
don’t correspond to the data type: letters where digits are expected, for example.

Input data conversion always succeeds for
character or string variables, however, and
they provide the only safe way for a program to
use the READ or READLN procedures with
unknown data.

You should note carefully that these four procedures—READ, READLN, WRITE,
and WRITELN—can be used only with a file variable whose component type is
CHAR. If X is an integer or a real number, WRITE (X) is perfectly legal, since it first
converts X to a sequence of characters and then sends them to the TV screen. If

324 APPLE PASCAL

OUTFILE is of type TEXT or FILE OF CHAR, then WRITE (OUTFILE, X) is also legal,
and for the same reason. But if OUTFILE is of type FILE OF INTEGER or FILE OF
REAL, then it is illegal in Apple Pascal to use the statement WRITE (OUTFILE, X).
(Some other versions of Pascal allow this use of WRITE.)

The final version of program FILEIT is a
good starting point for any future program that
gets input from a TEXT file and puts output into
another TEXT file. Study it carefully and
remind yourself what each statement does.

There is one last point worth noting about TEXT files. You may have noticed in
the Extended Directory Listing two strange things about file COPY. Though it is
supposed to contain all the text in SYSTEM.WRK.TEXT, which is four blocks long,
COPY is only one block long. Furthermore, SYSTEM.WRK.TEXT is identified in the
rightmost column by the word TEXT, while COPY is identified by the word DATA.
What is going on?

In fact, SYSTEM.WRK.TEXT (or any other file with a . TEXT as a suffix) has more
data in it than just text. The first two blocks, for example, contain information that
must be available to the EDITOR if you are to succeed in bringing the file into the
workspace. When a Pascal program opens such a file, however, these blocks are
skipped over and the first READ, READLN, or GET begins with the first text
character in the file. What is contained in COPY, therefore, is just the text part of
SYSTEM.WRK.TEXT.

Now is a good time to learn about another feature of the FILER. Notice that when
you used the FILER'’s Extended Directory Listing command you saw at the bottom of
the screen a phrase similar to this:

13713 FILESy 23 UNUSEDy 17 IN LARGEST

This means that the largest piece of consecutive free storage space on the diskette is
17 blocks long, out of a total free storage space of 23 blocks. One or more UNUSED
areas account for the other six blocks.

Many file activities require the use of consecutive storage locations. For
example, if you are editing a large workfile, you will not be able to quitand update (Q
U) unless there is enough consecutive storage to hold the new version of
SYSTEM.WRK.TEXT. The message “ERROR WHILE WRITING FILE” results when
there is not enough consecutive storage space.

Furthermore, many small activities, such as creating new files or removing old
ones, can result in fragmentation of unused storage space. Obviously, it would be

|

RECORDS AND FILES 325

nice to retain consecutive space on the diskette. From the FILER, type K. To the
question “CRUNCH ?”, answer with the diskette name APPLEO: and a RETURN. As
a safety measure, the FILER asks

FROM END OF DISKy BLOCK 2807 (Y/N)

Type Y. Messages appear telling you that various files are being “moved forward”
and that the diskette is now “crunched”. Do another E(xtended Directory. Notice
now that all of the UNUSED space is consecutive.

It is a good practice from time to time to
K(runch your diskette to get maximum consec-
utive storage.

13-8 INTERACTIVE FILES, INPUT, OUTPUT, AND KEYBOARD

You saw in the last section that the TEXT data type means exactly the same thing
as FILE OF CHAR. Apple Pascal offers still another file data type, called
INTERACTIVE, which is similar to, but not exactly the same as, TEXT. That is the
topic of this section.

To see the difference clearly, let's start out with an earlier version of program
FILEIT. Remove the five lines you just added to FILEIT, and make the changes
shown below.

FROGRAM FILEITS

VAR
COMFONENT ¢ CHAKS
DATAFILE ¢ TEXT#

BEGIN
RESET C(DATAFILEy ‘APFLEOILETTER.DATA’)S
WHILE NOT EOF (DATAFILE) DO
BEGIN
READ (DATAFILE, COMFONENT)$
WRITELN (COMFONENT)
ENDi Ok WHILE %)
CLOSE (DATAFILE)
END.

326 APPLE PASCAL

Note that each READ will input one character now, and that the disk file name is
LETTER.DATA. Run the program. If you made the changes correctly, you saw the 26
letters of the alphabet appear in a column on the TV screen.

Change the word TEXT in your VAR block to INTERACTIVE, and run again. The
results should be nearly the same, but not exactly. For some reason your program
wrote an extra Z at the bottom of the list of letters. When you understand why that
happened you will know the basic difference between the TEXT and INTERACTIVE
data types.

Recall that for the TEXT data type the statement

REALN (DATAFILEy COMFONENT)

was exactly equivalent to this pair:

COMFONENT 3= DATAFILE™S$
GET (DATAFILE)

That is, the character variable called COMPONENT was first assigned the value of
the current component of DATAFILE. After that, the GET procedure input a new
value for DATAFILEA. Recall also that to make this sequence work for the first
character in the file, it is necessary to do a GET as soon as the file is opened, and
RESET does that automatically.

Now for the differences. If a file variable is declared to be of type INTERACTIVE,
then the RESET procedure does not do an automatic GET. Furthermore, the
statement

REALIN (DATAFILEy COMFONENT)

is exactly the same as this pair:

GET (DATAFILE)§
COMPONENT 3= DATAFILE"

That'is, the order of the GET and the assignment statements is reversed. These two
differences work together in such a way that the first READ after a RESET correctly
picks up the first character in the file, and each successive READ gets the next
character. That much is true whether the file is TEXT or INTERACTIVE.

RECORDS AND FILES 327

The difference shows up at the end of the file. Suppose that LETTER.DATA
contained just the single character A, followed by the end-of-file marker. If the data
type were declared as TEXT, then the RESET statement would do a GET. Thatwould
make DATAFILE A\ = ‘A’ The first READ statement would assign ‘A’ to COMPO-
NENT and then would do another GET. That GET would set EOF to true, and the
WHILE loop would exit.

Now let's see what happens if the data type were declared to be INTERACTIVE.
The RESET would not do a GET. The READ would do a GET, making DATAFILEA=
'A’, and then would assign A’ to COMPONENT. Since the READ does not do a
second GET, EOF remains false: there has been no attempttoinputdata beyond the
end-of-file marker. Therefore, the WHILE loop is not exited, and a second READ is
done. This time the GET causes EOF to become true, but it leave DATAFILEAin an
undefined state. “Undefined” means that different versions of Pascal willhandle the
situation differently. Apple Pascal leaves DATAFILE /\ equal to its previous value,
which is the previous character read. Finally, the READ assigns this incorrect value
to COMPONENT. The WHILE loop then exits, since EOF has become true.

Now you can see why the present version of your program wrote two Zsonthe TV
screen before quitting. To avoid this problem, you would have to change the
program logic in the BEGIN/END block as follows:

BEGIN
FESET (DATAFILEs “AFFLEOILETTER.DATA) §
REFPEAT
REAL COATAFTLEy COMFONENT) 3
IF NOT EOF (DATAFILE
WRITELN (COMFONE
UNTIL EOF (UATAFTLE)$
CLOSE COATAFTLE)
ENID.,

This is a rather ugly and inefficient control structure.
You should avoid it by declaring your file variable to be of
type TEXT when dealing with disk text files.

Why have the INTERACTIVE type if it presents so many problems? Well, there is
one situation in which the TEXT approach fails miserably, and that is when a
program tries to do a READ from the keyboard. When any Pascal program first starts
running, the keyboard is automatically opened as a file with the name INPUT. If
INPUT were off type TEXT, then an automatic GET would be done from the keyboard
and your progrram would halt, waiting foryouto type something. If youtyped a Q, for
example, then the value would be given to INPUTA, and the first READ statement
would assign "Q’ to the variable in the READ statement. Then it would do another

328 APPLE PASCAL

GET, which would halt the program again and wait for more input. That is obviously
bad.

Apple Pascal avoids this problem by declaring INPUT as being of type
INTERACTIVE. There is no GET from the keyboard when INPUT is first opened.
Furthermore, each READ starts with a GET, which causes a halt at the right time.
Then when a character is typed in, its value is given to INPUT/ which is assigned to
the variable in the READ statement.

So you can see that you have been using an INTERACTIVE type of file all along,
whenever you used a READ or READLN statement, such as

FEADLN Ay By ©)

You could also have written that statement like this:

FEADLN CINFUTy Ay By)

If the first parameter in the list is not the name of a file, then INPUT is assumed for
READ and READLN procedure calls. Another file, named OUTPUT, is similarly
opened for all programs and is assumed for the WRITE and WRITELN procedures
when the first parameter is not a file name. OUTPUT is also of type INTERACTIVE,
although the difference between TEXT and INTERACTIVE is insignificant for
output: the WRITE procedure works the same way for both.

Apple Pascal opens one last file automatically for every running program. It is
called KEYBOARD and is of type INTERACTIVE. It is legal to do a GET or READ or
READLN from KEYBOARD. The result is exactly the same as if you had used those
procedures with the INPUT file, except that the characters you type in response are
not automatically written on the screen. Suppose, for example, that you wanted the
user of your program to respond to a question by typing one letter out of the set (A,
B, C, D, E). The following statements would have the apparent effect of disabling all
the keys on the keyboard except the five you want. Then, when one of those five was
typed, it would be written on the screen.

REFEAT

READ (KEYROARDy CH)
UNTIL CH IN L7A7 7 E7D5
WRITE (CH)

This program segment is typical of the use of the KEYBOARD file. It gives you a very
nice tool for building a friendly input validation procedure as part of a program that
converses with the user.

RECORDS AND FILES 329

13-9 REMOVING FILES FROM A DISKETTE

. Now that you know how to create data files on your diskette, you will face an
information pollution problem if you do not discard useless files. After you have
completed this session, including the problems, come back to this pointand tidy up
your diskette.

Let's suppose you are ready to remove the LETTER.DATA file. Go to the FILER
and type R. The prompt line at the top of the screen says

REMOVE 7

Type APPLEO:LETTER.DATA and press RETURN. If all went well, you are now
looking at the confirmation prompt,

UFDATE DIRECTORY 7

which gives you a way out if you discover to your horror that you asked to remove
some precious file. For example, if you had typed SYSTEM.EDITOR instead of
LETTER.DATA above, then you could now type N and all would be forgiven.
Type Y to confirm. That pops you back to the FILER level. Type E and APPLEO:
gnd RETURN. Note thatthe name LETTER.DATA isnotin your directory. Inits place
is the word < UNUSED >, followed by a one. This means that one block of storage
has been returned. Repeat all the above steps for each file you want to get rid of.
After you remove any files, you should K(runch the diskette again to regain as

much consecutive space as possible. Type K and respond to the questions as
before.

SUMMARY

In Session 12 you learned about the ARRAY data types for dealing with
collections of data components, all of the same type. In this session you saw that the
RECORD data type permits you to handle a collection of components of distinct
types. You also saw how the FILE data type allows you to move data of any other
type into and out of the main memory of the computer.

® RECORD components were referred to by their field names, separated from the
record name by a period.

® There was no presumed order among the components of a record.

® The value of one record could be assigned as a whole to another record variable

of the same type.

330 APPLE PASCAL
RECORDS AND FILES 331

The WITH statement allowed you to omit the record variable name from
component names.

You wrote programs to create a disk file of integer components and one of
character components.

You used the FILE OF phrase to declare a variable of type FILE.

You used a file variable name in procedure calls affecting the data associated
with that file.

You used the REWRITE call to open a new disk file for receiving output.

You used the circumflex accent mark as a suffix on the file name to refer to the
current component of the file.

You used the PUT procedure to output a single component to the open file.

You used the CLOSE procedure with a LOCK parameter to close the open file

GET CINFILE)$
CH 3= INFILE™

WRITE and WRITELN could also be used with TEXT or INTERACTIVE files. In
both cases,

WRITE (OUTFILEy CH)
was equivalent to

OQUTFILE™ 3= (H$
FUT (OUTFILED

and make a permanent entry in the diskette directory. ® READ, READLN, WRITE, and WRITELN, when used without any file name
referred to INPUT and OUTPUT, which were opened automatically. ,
RESET opened an existing disk file for input.
P 9 P ® These four procedures could handle CHAR, STRING, INTEGER, and REAL
You used GET to input the next component of a file. parameters, c_onvertlng each value to (or from) a sequence of characters for
output to (or input from) a file of characters.
You found that RESET does an automatic GET (except for file variables of type -

INTERACTIVE).
EOF was used to detect input past the end-of-file marker.
TEXT was an abbreviation for FILE OF CHAR.

READ and READLN could be used with TEXT files. If CH is a CHAR variable,
then

REAL (INFILEy CH)

was exactly equivalent to

CH = INFILE™$
GET (INFILE)
if INFILE was declared to be of type TEXT.

If INFILE was declared to be of type INTERACTIVE, however, the above READ
call was equivalent to

Three file variables, INPUT, OUTPUT, and KEYBOARD, were declared by the

system to be of type INTERACTIVE and were opened automatically when the
program execution began.

Input frf)m KEYBOARD was like that from INPUT, except that the characters
typed did not appear on the screen.

You used the FILER’s E(xtended List Director K
9 ’
. Y (IunCll and R(emove

332 APPLE PASCAL

Table 13.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in bold face. (Code: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS; t = declared in TRANSCEND)

Reserved
Words

PROGRAM
USES
CONST
TYPE

ARRAY
RECORD
SET
FILE
VAR
PROCEDURE
FUNCTION

BEGIN

FOR
TO
DOWNTO
DO

REPEAT
UNTIL

WHILE

IF
THEN
ELSE

CASE
OF

WITH

END

DIv
MOD

AND
OR
NOT
IN

oo o o

Built-In
Procedures

CLOSE
DELETE
GET

PUT

READ
READLN
RESET
REWRITE
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO
VIEWPORT

Built-In
Functions

Boolean
EOF
EOLN
a BUTTON
a KEYPRESS

Char
CHR

Integer
LENGTH
ORD
POS
ROUND
TRUNC

a PADDLE

a RANDOM

Real
ABS
PWROFTEN
SQR
ATAN
CcOSs
EXP
LN
LOG
SIN
SQRT

— . . o+ o+

String
CONCAT
COPY

Other
PRED
SUCC

Other
Built-Ins

Constants

[(e (el ({e (e (e (e (e (e (e (e (e (o (o]

FALSE
TRUE
MAXINT
NONE
WHITE
BLACK
REVERSE
RADAR
BLACK1
GREEN
VIOLET
WHITE1
BLACK?2
ORANGE
BLUE
WHITE2

Types

g

BOOLEAN
CHAR

INTEGER
INTERACTIVE
REAL

STRING

TEXT
SCREENCOLOR

Variables

INPUT
KEYBOARD
OUTPUT

Units

APPLESTUFF
TRANSCEND
TURTLEGRAPHICS

RECORDS AND FILES 333

QUESTIONS AND PROBLEMS

1. You need to manipulate a list of employee’s names and social security numbers.
Define a data type for a single variable that will contain all the data for all the
employees. How would you refer to the social security number of the 87th
employee?

2. If Pascal had no RECORD type, how would you approach the above problem?

3. Set up the TYPE declaration for the following situation. You want STUDENT.ID

to be aninteger ID number and you want STUDENT.NAME to be the entire name
of astudent. But you also want STUDENT.NAME.FIRST to be just the first name
and STUDENT.NAME.LAST to be the last name. (Hint: use arecord of records.)

4. What VAR declaration would you use to define a file variable such that each file

compqnent was one student record as defined in Question 3? If the file variable
name is STUFILE, what is the type of STUFILEA? What data would be contained
in STUFILEA?

5. How do you open STUFILE in Question 4 for output? For input? How do you

[o)]

close it in each case?

. STUFILE in Question 4 has just been opened for input. Is STUFILEA defined at
that point? If so what is its value?

7. STUFILE in Question 4 has just been opened with aREWRITE call. Is STUFILE A

[ee]

defined at that point? If so, what is its value?

. Use the type declaration of Question 3 to write the steps necessary to output an
ID number of 27862, last name of SMITH, and first name of ALFRED, to the next
component of the diskette file opened as STUFILE.

9. OUTFILE is a FILE of INTEGER. What do these three statements do?

OQUTFILE™ = 233
FUT (OUTFILE)$
FUT COUTFILE)

10. Consider the version of program FILEIT on page 320. Explain what would

11.

happen if LETTER.DATA were empty.

Suppose that in the version of FILEIT on page 320, DATAFILE had been
declared to be INTERACTIVE instead of FILE OF CHAR. Explain why the
program would give unpredictable results? Would the first character on the
screen represent the first character in the file? What about the last character?
What about the ones between?

334 APPLE PASCAL
12. Write a program to input the numbers in the file APPLEO:NUMBER.DATA.

13. Someone gives you a diskette that contains a file of characters divided by end-
of-line markers that are never more than 80 characters apart. Write a program to
input the file and display the contents on the screen. Would the program have to
be changed if you didn’t know there were any end-of-line markers?

14. Explain the difference between the way READ works for TEXT and for
INTERACTIVE file openings.

SESSION

FOURTEEN

RECURSION

Most people have seen recursion in pictures. A recent magazine cover, for
example, contained a picture of a TV set that was turned on and showed a picture of
the same TV set, which was turned on and showed a picture of the same TV set,
which was turned on, etc. Such a picture is called recursive because one of the
objects in the picture is the picture itself. It would be impossible to describe the
contents of the picture without referring to the picture itself. The picture recurs in its
own definition. Many programming problems are easier to express by means of
definitions that contain the name of the thing being defined. Pascal permits you to
do that sort of thing, and you will experiment with examples in this session.

SESSION GOALS

Your main goal in this final session is to see how to analyze a problem in terms of
functions and procedures that call themselves. You will write such a recursive
function to compute the sum of a series of integers. You will see how complex
pictures can be described in terms of recursive procedures. You will learn that every
recursive procedure must have a way to prevent infinite recursion. You will
investigate an extended example of a mutually recursive program that simulates a
Mondrian painting.

14-1 RECURSIVE ARITHMETIC

Suppose you are given the task of summing all the integers from one to 100. How
would you do it?

Certainly the most straightforward way would be to start with a variable (call it
SUM) equal to zero and then add each number from one to 100 to it. Let's write such
aprogram in two parts: a function that returns the sum of the first NUM integers, and
a call to that function with a parameter value of 100. Here is such a program:

335

336 APPLE PASCAL

Enter this program in a new workfile and run it. You should see the answer, 5050,
appear on your TV screen just below the “RUNNING...” message.

That method was quite clear-cut and may at first seem to be the only way to
handle this kind of problem. In fact, there are several other ways. The following
approach involves recursion.

You want SUM (100). Suppose you knew the value of SUM (99). Then you could
get what you want by the simple formula

SUM (100) = SUM (99) + 100
which says that the sum of the first 100 integers is equal to the sum of the first 99
integers, plus 100. That certainly is true, but you don’t know the value of SUM (99),

do you? Perhaps not, but by the same argument it must be true that

SUM (99) = SUM (98) + 99

and in general,

SUM (NUM) = SUM (NUM - 1) + NUM
Of course, there is a problem with the above approach: it keeps defining unknown
things in terms of other things that are also unknown. Sooner or later we must know
some value of SUM. And indeed, you do know a particularly easy case:

SUM (1) =1

In a strictly logical sense, therefore, it is correct to define SUM (NUM) by these two
equations:

RECURSION 337
SUM (1) =1

SUM (NUM) = SUM (NUM - 1) + NUM

where NUM is assumed to be any positive integer. This is called a recursive
definition because the name SUM recurs in the definition of SUM.

A remarkable feature of Pascal is that it allows you to define functions and
procedures in this same recursive fashion. Study the following version of function
SUM carefully and try to understand how it works. Edit your program to look like this
version:

FROGRAM ADXIEMS

FUNCTION SUM (NUM ¢ INTEGER) ! INTEGER?
BEGIN
IF NUM = 1 THEN
. BUM =1
LoBUM t= SUM (NUM = 1) + NUM
END# (X SUM %)

BEGIN
WRITELN (SUM (100))
END.

Note that the entire BEGIN/END block of function SUM consists of a single IF
statement with a THEN block and an ELSE block. If the parameter value in a call to
SUM had been set equal to 1, then the function returnsa 1. That much is easy to see.
Now let's see what happens with the call to SUM (2). In this case the parameter value
is not equal to 1, so the ELSE block is executed. It assigns to SUM the value of SUM
(1) +2.Since the parameter value equals 1, this second call returns avalue of 1, as we
have already seen. Since SUM (1) =1, it follows that SUM (1) + 2 = 3; and that is the
value that gets assigned to SUM and so gets returned as the value of SUM (2).

A SUM (3) call would work in the same sort of way. The ELSE block would be
carried out, assigning to SUM the value of SUM (2) + 3. But SUM (2) is a new call to
SUM. Once again, the ELSE BLOCK in that second edition of the function would be
carried out, assigning to the second edition of SUM the value of SUM (1) + 2. But
SUM (1) is still another call to SUM. Finally, the THEN block in the third edition of the
function gets carried out, assigning to the third edition of SUM the value one. Since
there are no more calls, the third edition of SUM returns with that value, one. That
result is then added to 2 and assigned to the second edition of SUM, which returns a
value of 3. Finally, that result is added to 3 and assigned to the first edition of SUM
which returns a value of 6 for SUM (3), which is the final result.

Now run the recursive version of the program and confirm that it works as
advertised.

Perhaps the easiest way to think about recursion in Pascal is to imagine thateach
internal call to SUM creates a totally new copy of the function with its own
independent set of names and values that are known /ocally within that copy but are

338 APPLE PASCAL

not known to the earlier copy that called the new one into being. Think of the call,
SUM (100), as creating 100 independent copies of the SUM function, each of which
has a statement of the form SUM :=... Nevertheless, the name SUM in the 100th copy
is independent of the name SUM in the 37th copy and all other copies. Each copy is
like a sibling of the other copies, and Pascal’'s general rule about the scope of
variable names (and other names) applies also to successive copies of a recursive
function or procedure.

Some implementations of recursion actually do create a separate copy for every
call; so this way of thinking about recursion is not just conceptual. Apple Pascal,
however, does not create copies of the actual program statements. Instead, it stacks
up copies of just the local variables. However it is done, handling recursion takes
both processor time and memory space. Despite that price, a recursive definition is
often the clearest way to define a process.

We shall soon return to other examples of recursion, but before we do, let’s look
one last time at the problem of summing consecutive integers. It turns out that
neither the direct FOR loop approach nor the recursive approach would pass muster
as good programming. There is a far simpler way, and folklore has it that the great
mathematician, Karl Friedrich Gauss, figured it out in 1785 when he was a small
child at school. His teacher, annoyed at some misbehavior, required as punishment
that he add all the numbers from one to 100. The child thought about it for a few
seconds and reported the correct result: 5050. His method was to notice that

1+ 100 = 101
2+ 99 = 101
3+ 98 = 101

49+ 52 = 101
50+ 51 = 101

Thus there were 50 occurrences of 101. The answer had to be 50 times 101, or 5050.
This way of doing things is summed up by the formula

SUM = NUM * (NUM + 1) DIV 2

for the sum of the first NUM positive integers.
Edit your program as follows. Then run it and check the time needed.

RECURSION 339

FROGRAM ALIDEMS

FUNCTION SUM (NUM ¢ INTEGER) ! INTEGERS#

BEGIN
ENDS (X SUM %)
BEGIN
WRITELN (SUM (100))

END.

14-2 RECURSIVE PICTURES

The example of recursion that began this session was a pictorial one. In this
section you will see how to define recursive pictures of your own. Clear out your
workfile and enter the following nonrecursive program.

The main program first initializes the Apple window so that it is looking at the
graphic page and sets the pen color to NONE. The next statement moves the “turtle”
to the bottom of the screen near the left edge. The next line sets pen color to WHITE.
The fourth line calls SQUARE with a size value of 191. The last line creates a
program halt so that you can examine the picture. Your procedure SQUARE is very
simple. It merely does a move in its initial direction (to the right, as set by
INITTURTLE) a distance equal to the value of the SIZE parameter. Then it turns 90
degrees counterclockwise. These two steps are repeated four times. At the end, the
turtle is back where it started and is pointed to the right again.

340 APPLE PASCAL

Run the program. When you have finished looking at the square, press RETURN
and then go back to the EDITOR.

As it stands, your program now draws a picture of a square. Suppose instead that
you wanted a picture of a square that contained within it a picture of a slightly
smaller square that contained within it a picture of a still smaller square, that
contained...etc. The following modification of SQUARE should do the trick:

PROCEDURE SQUARE (SIZE ¢ INTEGER)S§
VAR
I ¢ INTEGERS

t= 1 TO 4 DO
BEGIN
MOVE (SIZE)§
TURN (90)
ENDj

EN X
END$ Ok SQUARE %)

Make the above changes. Note that recursion occurs in the THEN block, which first
draws a square, just as before, and then calls SQUARE with a size 90% that of the
size it was called with. (Note that the expression SIZE * 0.9 is of type REAL. The
TRUNC function turns the result back to INTEGER, as required for the parameter
type in the definition of SQUARE.)

The entire procedure is now asingle IF statement, which is what prevents infinite
recursion. Sooner or later the shrinking size parameter will equal one. When that
happens, SQUARE does nothing, and that stops the recursive sequence of calls.

Run the program. Press RETURN when you're through looking at the display. As
promised, you have produced a picture of a square containing a picture of a square
containing... A slight variation of this program is even more interesting. Go to the
EDITOR. Change the THEN block as follows:

FOR I = 1 TO 4 DO
BEGIN
MOVE (SIZE)j§
TURN (90)

Run this version. Then return to the EDITOR and study the two statements you
added and their effects. Each square now contains a picture of a rotated square,
containing a picture of a rotated square, containing...

RECURSION 341

Now let's make another small change in the definition of SQUARE. Delete the
two statements you just added. Move the call to SQUARE inside the FOR statement.
Change 0.9 to 0.45. The new version of the THEN block should look like this:

BEGIN
FOR I ¢= 1 TO 4 DO
BEGIN
MOVE (SIZE)$
iy By
END$

END (% IF x)

With this new version, SQUARE will draw one side of a square, turn 90 degrees, and
then call for a picture of a smaller square to be drawn at that corner before
continuing with the next side of the original square. What do you think will result?
Run the program and find out.

14-3 ANOTHER RECURSIVE PICTURE

Probably the best way to get a feeling for recursive programming is by means of
examples. This section is devoted to another simple graphic example of a recursive
procedure. It draws members of a family known as dragon curves. Clear out your
workfile and enter the following program.

342 APPLE PASCAL

To understand this program, start with the main BEGIN/END block. A FOR loop
first puts the turtle at the starting point (70, 50); second, the main BEGIN/END block
calls DRAGON with a size parameter of 140 screen units and a “level” parameter
equal to the loop variable; finally the program halts, awaiting a RETURN from the

keyboard. Each time through the loop the process is repeated, but the level
parameter goes up by one.

Now, study the definition of DRAGON.

,

As with any other recursive procedure, you
will have the essential idea when you see what
happens in the two special cases: the non-
recursive case and the simplest recursive case.

RECURSION 343

The nonrecursive case for DRAGON occurs when the level parameter equals
zero. In that case DRAGON simply draws a line of length equal to SIZE in the current
direction of the turtle. The simplest recursive case occurs when the level parameter
is equal to one. In that case, the following sequence of events takes place:

1. The turtle is turned 45 degrees counterclockwise.

2. DRAGON is called with a smaller size and a level value of zero. So ashorter line is
drawn in a direction 45 degrees above the horizontal.

3. The turtle is turned 90 degrees clockwise.

4. DRAGON is called again with the same smaller size and zero level value. Again a
shorter line is drawn, this time in a direction 45 degrees below the horizontal.
The beginning of the second line is connected to the end of the first line.

5. The turtle is turned 45 degrees counterclockwise. Its heading is now the same as
it was originally.

Note that the magic number 0.707 is chosen here so that the turtle will end up in the
same location where the nonrecursive case would have left it after the horizontal
straight-line move.

Run the program. The first picture is the nonrecursive case. Now press RETURN
and examine the simplest recursive case. Was that what you expected? Before
pressing RETURN, try to figure out what the level = 2 picture will look like. Press
RETURN and see. Continue examining curves of higher and higher degree of
recursion.

You probably noticed that at a level of 5 the curve began to cross itself. This can
be avoided by the simple tactic of alternating the 45 degree turns so that the first is
counterclockwise, the second is clockwise, etc. To do that you need a SIGN
parameter in the parameter list of DRAGON. Here is the changed version:

VAR
NEWSIZE ¢ INTEGERS$
BEGIN
IF LEVEL <= 0 THEN
MOVE (S1ZE)
ELSE
BEGIN

END (X IF %)
END (K DRAGON %)

344 APPLE PASCAL

Make this change. Then change the FOR loop of the main BEGIN/END block as
follows:

FOR LEV = 0 TO 10 DO
BEGIN

READLN
END Ok FOR %)

This time each pass through the loop begins with a screen erase. Also, the main
program calls DRAGON with a third parameter of value equal to one. This means
that SIGN will equal one at the outer level of the call to DRAGON. Therefore the first
turn will be in the +45 degree direction, which is counterclockwise, as before.

Run the program and examine carefully the picture produced at levels zero, one
and two of recursion. You should find that levels zero and one are exactly the same
as before. Level two produces the first difference. Instead of looking like this,

VAN
7 \
e N
// N
o~ N7 \\
A N
—_ <7 N
[S/ AN
> v, N
@ N
- , N
, \
’ \
/ \
/7 N
7 Level 0 N
e e e e e =
it looks like this:
// N
7/ AN
Ve N
’ N
o™ 7/
Ny \\
— /
[Qe\/ \\
2 e, N
3 V. N
’ \
’ N
4 N
4
// \\
’ Level 0 N
e o e e e e — o o ——— - AN

That result is the effect of alternating the SIGN values between +1 and -1. Try to
predict what the dragon curve will look like for LEV = 3. Press RETURN and see.
Check the rest of the levels.

RECURSION 345
14-4 MUTUAL RECURSION

So far you have seen several examples of recursive functions and procedures. In
each case the BEGIN/END block had a logical path that was nonrecursive and
another logical path in which the function or procedure called itself. Such a situation
is called simple recursion. It is also possible to have more complex types of
recursion. Procedure A could call procedure B. Procedure B could call procedure C.
At this point you might conclude that procedures A and B are nonrecursive. But
what would you say if a reading of procedure C showed that it could call procedure
A? Is C the recursive one? Or is it A? Or B?

Thissituation is called mutual recursion. The set of procedures A, B, and C would
be called mutually recursive, since a call to any one of them could cause recursion to
occur. This section will consider a graphic example of mutual recursion.

Piet Mondrian, the Dutch painter who lived from 1872-1944, created a series of
canvases that had a strong similarity to one another. Each one had a solid white
background with solid black horizontal and vertical bars distributed in a somewhat
random fashion over the surface. The bars were of a fairly uniform thickness. A few
of the enclosed rectangles were painted in brilliant primary colors.

Our goal in this section is to define a program that reproduces some of the
attributes of a Mondrian painting of that type. Here is our basic strategy: we define
two similar procedures whose task is to receive a given rectangle and slice it at
random into two smaller rectangles. Procedure VERTICAL, for example, receives a
rectangle defined by the four parameters LEFT, RIGHT, BOTTOM, and TOP. It picks
anumber at random between LEFT and RIGHT. Call it MID. Then it draws a vertical
bar at MID, from BOTTOM to TOP. Now it has produced two new rectangles. One is
specified by LEFT, MID, BOTTOM, TOP; the other by MID, RIGHT, BOTTOM, TOP.
Then procedure VERTICAL calls its twin brother, HORIZONTAL, twice. The first
time it passes the lefthand rectangle and the second time, the righthand rectangle.
HORIZONTAL's job is to divide the received rectangle into smaller rectangles, to
draw a horizontal bar between them, and thento call VERTICAL twice, passing each
of the two new rectangles.

You can see from the above description that HORIZONTAL and VERTICAL are
going to be mutually recursive procedures. Let’s start with a nonrecursive program
that contains the first steps in this direction. Study the listing below, expecially
procedure VERTICAL and the main BEGIN/END block.

346 APPLE PASCAL

Notein procedure VERTICAL that SPAN is assigned a value equal to the entire width
of the rectangle. Then SPAN is used in the expression RANDOM MOD SPAN to
compute a pseudorandom integer between zero and SPAN - 1. That number is
added to LEFT and assigned to MID. MID, therefore, is a random number in the
subrange LEFT..RIGHT. The next two lines of VERTICAL draw a vertical line at the
point where the distance from the left edge of the screen is MID. So far, that is all that
VERTICAL can do.

Now let's look at the main BEGIN/END block. The first statement calls
RANDOMIZE, to vary the seed of the random number generator. INITTURTLE does
the usual graphics mode initializations. The rest of the main block is a single
REPEAT statement. It begins by filling the screen with the color WHITE. Next, it calls
VERTICAL, passing parameters for the left, right, bottom, and top of the full graphic
screen. Finally, it halts with the READ call, waiting for the user to touch any key. If
the input character is a Q, the program stops. Otherwise the REPEAT loop
continues. .

Clear out your workfile. Enter the above program and run it. Press the spacebar a
few times to experiment with the program. Then type Q to quit. Well, that won’t win
any art contests, but it's a start. As you saw, VERTICAL did what we told it to do,
drawing randomly placed vertical lines on the screen.

Before turning to the definition of its twin, HORIZONTAL, let's do a bit of
stepwise refinement on VERTICAL. First, those thin vertical lines were poor
representations of Mondrian’s bold black stripes. We need an area-filling procedure
that will replace the line-drawing steps in VERTICAL. Here is a simple one:

RECURSION 347

INTEGER$
SCREENCOLOR) §

FROCEDURE FILL (Ls Ry Ry T
COLOR

se +o

BEGIN
VIEWFORT (Ly Ry By T)3
FILLSCRE

ENDF (X FIL

FILL has a 5-item parameter list. The first four are integers that define the left, right,
bottom, and top of the rectangle to be filled with color. The fifth parameter tells what
color to use. Since it is declared to be of type SCREENCOLOR, the value of that
parameter can be BLACK, WHITE, BLUE, etc. Notice that we have decided to enter
the parameter list on two lines of text, since it is a long one. That is legal in Pascal,
since a RETURN can be used whenever a space is legal. FILL does two things: it
defines a viewport equal to the rectangle passed to FILL; then it fills the rectangle
with the color value passed as the fifth parameter to FILL.

Now let’s see how to use FILL to draw the solid black bars that we want in our
picture. Suppose we define a constant, called HALF, that represents about half the
desired width of a bar. Then the call

FILL (MID ~ HALFy MID + HALFs ROTTOMs TOFs BLACK)

would draw a vertical black bar centered at MID and having a total thickness equal
to 2 * HALF + 1. Here, then is a revision of the first version of MONDRIAN:

| 348 APPLE PASCAL

PROGRAM MONDRIANG

USES
AFFLESTUFFy TURTLEGRAFHICSS#

VAR
CH ¢ CHARS

PROCEDURE VERTICAL (LEFTy RIGHT» BOTTOMy TOF ¢ INTEGER)S#

VAR

MIDy SFAN ¢ INTEGER?
BEGIN

SFAN 3= RIGHT - LEFT + 1%

MID = | + RANDOM MOD SFAN$

END? (X VERTICAL X)

BEGIN
RANIIOMLZE §
INTTTURTLE S
REFEAT
FILLSCREEN (WHITE)
VERTICAL (0y 279y 0y 1913
REAL (CH)
UNTIL CH = “Q“
END.

Enter the changes and run the new version.
So far, so good. Now let's write a HORIZONTAL procedure modeled after
VERTICAL. Here is a simple and direct translation:

Enter this new text into your program immediately after procedure FILL and before
procedure VERTICAL.

RECURSION 349

The next step is to modify procedure VERTICAL so that after it draws its vertical
bar it will call HORIZONTAL, passing the rectangle on the left side of the bar, and
then will again call HORIZONTAL, this time passing the rectangle on the right side
of the bar. Here is how VERTICAL should look:

FROCEDURE VERTICAL (LEFTy RIGHT» BOTTOM» TOF $ INTEGER)S$
VAR
MIDy SFAN ! INTEGERS$
BEGIN
SFAN 1= RIGHT -~ LEFT + 1%
. T

END$ (% VER

Enter the two new linesinto VERTICAL. Then run the program. Press the spacebar a
few times. Then type Q to quit.

Except foran obvious “bug”, things are looking up. VERTICAL drew its black bar;
it called HORIZONTAL, which drew a horizontal bar in the lefthand rectangle; then
VERTICAL called HORIZONTAL again, resulting in a horizontal bar in the righthand
rectangle. The bug shows up when you press the spacebar, expecting the screen to
erase. Itdoesn’t. The problem comes from an interaction between the FILLSCREEN
call in the main BEGIN/END block and the VIEWPORT call in procedure FILL. Each
call to FILL resets the viewport to a narrow bar and leaves it that way. FILLSCREEN
always fills in the current viewport. It works fine the first time, since the initial
viewport is the full screen. It fails after that.

You can fix the bug by replacing the FILLSCREEN (WHITE) call (in the main
BEGIN/END block) by a call to FILL, as follows:

Make this change and run again. This time you should start with a new white screen
each time you press the spacebar.

Now that VERTICAL is drawing its bar and then calling HORIZONTAL, and
HORIZONTAL is drawing its horizontal bars, all that remains is to have
HORIZONTAL call VERTICAL twice, first passing the lower rectangle and then the
upper one. VERTICAL would then do its number and then call HORIZONTAL, etc.

Let's see how to handle this case of mutual recursion. The first step is fairly
obvious. As before, we must make HORIZONTAL into a twin of VERTICAL. That is,
we need to add two new call statements back to the calling procedure. Change
HORIZONTAL as follows.

350 APPLE PASCAL

FROCEDURE HORIZONTAL (LEFTsy RIGHTy EOTTOMy TOF ! INTEGER)S?
VAR
MEDy SFAN ¢ INTEGERS
BEGIN
SFAN = TOF - RBROTTOM + 1%
MID 3= BOTTOM + RANDOM MOD SFANG

CK)#

ENDF (x H(

Now each procedure will compute a division into two smaller rectangles, draw a bar
between them, and call its twin twice, first with one of the new rectangles and then
with the other. Let’s see if that works. Try to run the program as it stands.

If you didn’t make any typing errors, compiling should have halted immediately
after appearance of the word VERTICAL in procedure HORIZONTAL. Type E to go
back to the EDITOR. Note that the compiler's complaint is that VERTICAL is an
“undeclared identifier”. Of course, you have defined VERTICAL, but the definition
occurs later in the text of the program. Pascal insists firmly that all words be defined
before first use.

The standard solution to this problem is to move the text of the definition ahead
of the place where it is first used. But if you move the text of procedure VERTICAL
ahead of the text of HORIZONTAL, you will still be in hot water. Note that the text of
VERTICAL uses the word HORIZONTAL, so the compiler would complain that
HORIZONTAL was an “undeclared identifier.”

Suddenly it looks as though mutual recursion is ruled out on a technicality.
Pascal, however, offers a way out of the woods. As things stand with your program
now, the compiler is complaining because it doesn’t know anything about the word
VERTICAL. In fact, all that the compiler needs to know about VERTICAL at this point
is the information contained in the heading:

FROCEDURE VERTICAL (LEFTy RIGHTs RBOTTOMy TOF ¢ INTEGER)

If that much of procedure VERTICAL could be placed ahead of procedure
HORIZONTAL in the text of your program, the compiler would be quite happy when
it saw the word VERTICAL later.

Pascal has a special way of allowing you to do exactly that. Here are the steps.

1. Put the complete heading of the procedure (or function), including the
parameter list, ahead of the first procedure (or function) that refers to it.

2. Follow the heading immediately by the reserved word FORWARD and a
semicolon.

3. Put the rest of the declaration of the procedure (or function) later in the text of
your program, duplicating the heading but omitting any parameter list this time.

RECURSION 351

Here is how these changes would look in your program:

PROCEDURE HORIZONTAL (LEFT, RIGHT» ROTTOMs TOF ! INTEGER)S$

VAR
MIDs SFAN ¢ INTEGERS$

BEGIN
SFAN $= TOF - BOTTOM + 13
MID $= ROTTOM + RANDOM MOD SFAN$
FILL (LEFTy RIGHTs MID - HALF» MID + HALFs BLACK)}#
VERTICAL (LEFTy RIGHT, EBOTTOM» MID - HALF ~1)4
VERTICAL (LEFTy RIGHT» MID + HALF + 1, TOF)

END# (X HORIZONTAL X)

VAR
MIDy SFAN ¢ INTEGERS$
BREGIN

GFAN 3= RIGHT - LEFT + 1%

MID $= LEFT + RANDOM MOD SFANS

FILL (MID -~ HALFy MID + HALF» BOTTOMs TOFs» BLACK)S

HORIZONTAL (LEFTs, MII - HALF -1y BOTTOMy TOF)}§

HORTZONTAL (MID 4+ HALF + 1y RIGHTs BOTTOM» TOF)
ENDF (X VERTICAL X)

Make the above changes. Run the new version. This time there should be no
compile-time errors. As required by Pascal, all words are declared in the text priorto
first use.

Everything is fine, except that the program doesn’t work the way we intended.
The first vertical bar is drawn correctly. The lefthand horizontal barisdrawn. Thena
vertical bar goes into the lower lefthand rectangle, etc. The problem is that each
division leaves unfinished business that never gets attended to. This is a case of
infinite recursion.

In fact, it looks as though the computer has stopped working. After about 45
seconds, however, the graphic screen disappears and you should see the message

STACK OVERFLOW

Don’t press RESET! Disaster has struck. Infinite recursion has used up all the
computer's memory. You will have to do a cold reboot. Remove APPLEO:, replace it
with APPLES3:, and press RESET. When prompted, exchange APPLEO: for APPLES:,
and again press RESET. When the COMMAND prompt appears, type E. You're back
in business.

352 APPLE PASCAL

You should not have been surprised at the outcome, since we broke one of the
cardinal rules of recursive programming.

Every recursive procedure definition must
contain a nonrecursive path.

In our program, VERTICAL always calls HORIZONTAL, and HORIZONTAL always
calls VERTICAL. The only path through either procedure is a recursive one.

To avoid infinite recursion, you need to specify some criterion for deciding when
to cut off the chain of recursive calls. In Section 14-3 you saw how to use a “level”
parameter for that purpose, and you could easily do the same thing here. For variety,
however, we’'ll use a somewhat more naturalistic graphic criterion.

You recall that the black bars are nine screen units wide. Sooner or later the
division process will make the size of the rectangles passed to HORIZONTAL or
VERTICAL so small that further division is pointless. Note that the variable named
SPAN has a value equal to the distance to be divided by the bar. If you were to define
a global constant named MINSPAN, then testing SPAN against MINSPAN would
give you a criterion for whether or not to divide the rectangle and continue the
recursion. For example, procedure HORIZONTAL would look like this:

FROCEDURE HORIZONTAL (LEFTs RIGHT» ROTTOMy TOF ¢ INTEGER)S$
VAR
MIDy SFAN ¢ INTEGERS$
BEGIN
SFAN = TOF - ROTTOM + 1%
IF SPAN = MINSFAN THEN
BEGIN -~ ;
MID ¢= ROTTOM + RANDOM MOD SFAN$
FILL (LEFTy RIGHTy MID - HALF»s MID + HALF» BLACK)}$
VERTICAL (LEFTs RIGHTs ROTTOM» MID - HALF -1)3
VERTICAL (LEFTy RIGHTy MID + HALF + 1y TOF)
END
END# (X HORIZONTAL %)

With this change, HORIZONTAL stops calling VERTICAL as soon as the width of the
passed rectangle is less than MINSPAN. Make this change to HORIZONTAL. Make
an identical change to VERTICAL. Change your CONST block as follows:

CONST
HALF = 43
MINSFAN = 403

RECURSION 353

Run the new version. Press the spacebar five or six times to see the variety of
pictures. Type Q to quit.

Now let's add some color. Note that in the new version of HORIZONTAL and
VERTICAL, nothing happens when recursion finally comes to an end. That is true
because the IF statement in each procedure does not contain an ELSE block. All that
we need to do is add an ELSE block which colors in the rectangle that did not get
divided further. Here is how the complete IF statement would look for procedure
HORIZONTAL.

IF SFAN = MINSFAN THEN
BEGIN
MID ¢= ROTTOM + RANDOM MOD SFANG
FILL (LEFTy RIGHTy MID - HALFy MID + HALF» BLACK) S
VERTICAL (LEFTs RIGHTy ROTTOM» MID — HALF -1)3%
VERTICAL C(LEFTy RIGHT, MID + HALF + 1y TOF)
END

ELSE)
ADDCOLOR (LEFT, RIGHTy ROTTOM» TOF)

Make the changes above in both HORIZONTAL and VERTICAL. .
The next task is to define procedure ADDCOLOR. The following steps will use a
probabilistic approach, rather like rolling a die to decide what color to use:

PROCEDURE AIDNCOLOR (Ly Ry By T ¢ INTEGER)}
BEGIN
CASE RANDOM MOD 10 OF
0 ¢ FILL (L Ry By Ty ORANGE)S
i1 ! FILL (Ly Ry By T» BLUE)
END (x CASBE %)
END?

RANDOM MOD 10 produces random integers in the range 0..9. If the result is zero,
the rectangle is filled with orange. If the resultis one, itis filled with blue. If the result
is greater than one, it is left white. Enter the above procedure into the text of your
program immediately after the end of procedure FILL. (Why there?) Run _the result.

We'll leave the Mondrian problem at this point of development. It is still a far cry
from being an automatic generator of masterpieces, but the program does gxhibita
few of the characteristics of Mondrian’s paintings. More to the point here, it shows
how to employ simple recursive methods and random events to produce structures
of apparent complexity. For future reference, the following is a listing of the final
version of your program.

354 APPLE PASCAL

FROGRAM MONDRIANSG

USES

AFFLESTUFFy TURTLEGRAFHICSS
CONST

HALF = 43§

MINGFAN = 403

VAR
CH ¢ CHARS

FROCEDURE FILL (Ly Ry By T ¢ INTEGERS$
COLOR 3 SCREENCOLOR) §
BEGIN
VIEWFORT (Ly Ky Ry T)§
FILLSCREEN (COLOR)
ENDF (% FILL %)

FROCEDURE ALDCOLOR (Ls Ry By T ! INTEGER)S
BEGIN
CASE RANDOM MOD 10 OF
O ¢ FILL (Ly Ry By Ts ORANGE);
1 ¢ FILL (Ly Rs By Ty BLUE)D
END' Ok CASE %)

FROCEDURE VERTICAL (LEFTy RIGHTy BOTTOM, TOF ! INTEGER)}
FORWARD#

FROCEDURE HORIZONTAL (LEFTy RIGHT» BOTTOMy TOF ! INTEGER)}#
VAR
MIDy SFAN ¢ INTEGERS$
BEGIN
SFAN &= TOF - BOTTOM + 1%
IF SFAN == MINSFAN THEN
BEGIN
MID = EOTTOM + RANDOM MOD SFAN$
FILL (LEFTy RIGHTy MID ~ HALFy MID + HALF» BLACK)#
VERTICAL (LEFTy RIGHTy ROTTOM» MID - HALF -1)3%
VERTICAL (LEFT, RIGHTy MID + HALF + 1y TOF)
END
ELSE
ANDCOLOR (LEFTy RIGHTs ROTTOM» TOF)
END? (X HORIZONTAL %)

RECURSION 355

FROCEDURE VERTICAL S
VAR
MLy SFAN ¢ INTEGERS
BREGIN
SFAN = RIGHT - LEFT + 13
IF SFAN == MINSFAN THEN
BEGIN
MID = LEFT + RANDOM MOD SFAN?
FILL (MID - HALFy MID + HALFy BOTTOM» TOFs ELACK)G$
HORIZONTAL (LEFTy MID - HALF -1y ROTTOM» TOF)}$
HORIZONTAL (MID + HALF + 1y RIGHTy EBOTTOM» TOF)
END
ELSE
ANDCOLOR (LEFTy RIGHTy ROTTOMy TOF)
END# (X VERTICAL x)

BEGIN
RANDOMIZE §
INITTURTLE $
REPEAT
FILL (0y 279y Oy 191y WHITE)S$
VERTICAL (0y 279 Oy 191)3%

REAL (CH)
UNTIL CH = ‘@7
END.
SUMMARY

You have seen in this session that is is legal in Pascal for a function or a
procedure to call itself recursively. You have also investigated four different
examples of recursion.

® You saw that when a function or procedure calls itself, it is exactly as though it
had called another function or procedure that happened to be an exact copy of
itself.

® You saw that each such copy has its own set of local variables not known to the
caller.

® You found thatinfinite recursion occurs and causes a fatal “stack overflow” error
if the function or procedure lacks a nonrecursive path.

® You saw how to use a “level” parameter to decide when to stop recursion.
® You wrote mutually recursive procedures that call one another.

® You used the reserved word FORWARD to allow placement of a procedure
heading before its first use in the text of a program.

® You used an abbreviated heading later in the text at the start of the main body of
the procedure whose full heading included the FORWARD declaration.

356 APPLE PASCAL

Table 14.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in bold face. (Code: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS: t = declared in TRANSCEND)

Reserved
Words

PROGRAM
USES
CONST
TYPE

ARRAY
RECORD
SET
FILE
VAR
PROCEDURE
FORWARD
FUNCTION

BEGIN

FOR
TO
DOWNTO
DO

REPEAT
UNTIL

WHILE

IF
THEN
ELSE

CASE
OF

WITH

END

DIv
MOD

AND
OR
NOT
IN

QOO aO » o

Built-In
Procedures

CLOSE
DELETE
GET

PUT

READ
READLN
RESET
REWRITE
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO
VIEWPORT

For a complete list of all the
words for the Pascal vocabulary,

see Appendix C.

Built-In
Functions

Boolean
EOF
EOLN
a BUTTON
a KEYPRESS

Char
CHR

Integer
LENGTH
ORD
POS
ROUND
TRUNC

a PADDLE

a RANDOM

Real
ABS
PWROFTEN
SQR
t ATAN
t COS
t EXP
t LN
t LOG
t SIN
t SQRT

String
.CONCAT
COPY

Other
PRED
SuccC

Other
Built-ins

Constants
FALSE
TRUE
MAXINT
NONE
WHITE
BLACK
REVERSE
RADAR
BLACK1
GREEN
VIOLET
WHITE1
BLACK?2
ORANGE
BLUE
WHITE2

QU QQQQOQQOQQQGQ®Q

Types
BOOLEAN
CHAR
INTEGER
INTERACTIVE
REAL
STRING
TEXT
SCREENCOLOR

Variables
INPUT
KEYBOARD
OUTPUT

Units
APPLESTUFF
TRANSCEND
TURTLEGRAPHICS

RECURSION 357

QUESTIONS AND PROBLEMS

1. Write a recursive function that returns the value of the sum
1+1/2+1/3+..+1/N
for any positive value of N. Be sure to make the function REAL.

2. Write a recursive function that returns the value of the sum
1-1/2+1/3-1/4+. £1/N
for any positive N. (Hint: the built-in function ODD (N) has the boolean value true
if N is an odd integer and false if N is even. Use ODD to decide whether to add or

subtract 1/N.)

3. Pictured below are the first three levels of a recursive picture. Write a procedure
to draw the picture for any non-negative level.

Level 0 Level 1 Level 2

4. Write a recursive procedure to draw pictures in a family, the first two members of
which are

5. Write a recursive procedure to draw pictures in the family whose fourth member
is this:

358 APPLE PASCAL

6. Write a recursive procedure to draw pictures in the family whose third member is
this:

0/

7. Write two mutually recursive procedures named SQUARE and TRIANGLE that
draw the family whose fifth member is this:

(Hint: after each figure is drawn, you will have to set pen color to NONE, do some
MOVEs and TURNS, and then set pen color back to WHITE, in order to move the
next figure inside the current one.)

8. Write two mutually recursive functions named SUM and PRODUCT that return
the value of the expression

((((1+2)*3+4)*5+6)*7+...+(N=-1)*N)

for any N greater than zero. How will the main program decide whether to call
SUM or PRODUCT to get the right answer for a given N?

WHERE DO YOU GO FROM HERE?

We said in the Introduction that our intention as writers was not to have the last
word on the subject of Pascal but instead to get you off toa good start. In fact, if you
have done most of the activities set out in these 14 sessions, you will have come a
long way towards a fairly deep working knowledge of the language. You know all the
statement types except one (the GOTO statement), all the built-in data types except
one (pointers), and nearly all the reserved words. You have used the majority of the
built-in functions, procedures and constants available in Apple Pascal. And you
have used all of the important system commands for entering, editing, running, and
saving programs.

Nevertheless, our book is not the last Pascal book you will ever read. Nor should
it be, since it cannot satisfy all of your future needs. For one thing, this book is a
dismal failure as a reference manual, either for the language or for the operating
system commands. For reference purposes you want acomplete, concisely written,
sequentially organized, precise set of definitions, rules and explanations of each
topic—something like a dictionary or a grammar book in the case of a human
language.

We have deliberately avoided the reference manual format in this book because
reference manuals are hard to learn from unless you already have a working
knowledge of the subject. You didn’tlearn your native language from a dictionary or
agrammar book. You learned it through a sequence of situations in which youwere
trying to communicate with other people already “programmed’ to communicatein
that language. You said things, tried out expressions, and saw what worked and
what didn’t. As years went by, somehow you ended up “knowing” your language.
Nevertheless, you probably continue to forget grammar rules, correctspellings, and
precise meanings. It would be painfully difficult to have to go back through all your
original learning situations starting with “mama”, “dada”, and “doggie”, in order to
check up on a grammar rule or a correct pronunciation.

Our book has been an attempt to give you a sequence of revealing “learning
situations” in which you have tried to communicate with a computer already
programmed to understand Pascal. You wrote things, tried out expressions, and
saw what worked and what didn’t. As the weeks went by, somehow (we hope) you
ended up “knowing” Pascal. Even so, there will be times when you forgetagrammar
rule, a correct spelling, or a precise meaning in Pascal. While we have worked
carefully to provide a thorough index for this book, you will generally do better to
turn to other sources both for reference purposes and to learn new things about
Pascal.

359

360 APPLE PASCAL

You may have already begun to do that. (One reader of the manusgript of this
book reported with great satisfaction that after the first six or seven sessions he was
able for the first time to read and understand the Apple Pascal Language and
Operating System Reference Manuals as well as other Pascal textbooks.) Yqu may
also have found, as your knowledge of Pascal grew, that it became more efficient for
you to learn by reading about the outcomes of the experiments we prqpo_sed foryou
than by actually carrying out the experiments. These are signs that it is time to read
other books and manuals, such as the ones below.

SUGGGESTED PASCAL REFERENCE BOOKS

The books listed here are ones that we believe will be worth your time and
attention either for reference or further study.

Apple Pascal Operating System Reference Manual (Apple Computer, Inc,
Cupertino, CA, 1979).

This book, plus a 14-page addendum, is your complete guide to the EDITOR, the
FILER, and the inner workings of the operating system. It also shows you how to
write and assemble programs written in the assembly language for the 6502
microprocessor in your Apple. You will find this book quite easy to read and
follow.

Beginners Guide to the UCSD Pascal System, Ken Bowles (Byte Books,
Peterborough, NH, 1979)

Apple Pascal is based on UCSD Pascal, which was written by Ken Bowles a.nd
his colleagues at the University of California, San Diego. Beginners Gu@e
supplements the information in the first book in this list and gives more detglls
about the way things work. It seems to be aimed mainly at people who yvould like
to implement UCSD Pascal on new computers. There are small differences
between Apple Pascal and UCSD Pascal, but Beginners Guide is the onlylother
book about the operating system commands and is probably worth having.

Apple Pascal Language Reference Manual, (Apple Computer, Inc., Cupertino, CA,
1979).

Despite the name, this book does not describe the Pascal Language. It and its
16-page addendum document the differences between Apple Pascal and
“Standard Pascal” as described in the Jensen and Wirth book below. It also
contains a careful description of all built-in procedures and functions availaple
in Apple Pascal. The book and addendum describe a variety of “compiler
options” and explain how to create special “units”, such as APPLESTUFF, and
add them to the system library.

[pE—

WHERE DO YOU GO FROM HERE? 361

Pascal User Manual and Report, Kathleen Jensen and Niklaus Wirth (Springer
Verlag, NY, 1978).

This is the Bible of Pascal, presented by the Creator. To some people, Pascal is
nothing more nor less than the language formally defined in this book. And itis a
very formal document, used mainly as a reference book when issues of grammar
and meaning come up. This book, when combined with the one immediately
above, gives you a complete, precise definition of the version of Pascal used by
the Apple Il computer system.

Programming in Pascal, 2nd Edition, Peter Grogono (Addison Wesley, Reading,
MA, 1980).

This university-level textbook is quite clearly written and well organized for
reference purposes. The large sample programs that tie the book together are
nice examples of serious use of the data structures possible in Pascal. This is a
good place to learn about the pointer data type and its application. The version
of Pascal used here is CDC 6000 PASCAL, which is the “official” version written
under the guidance of Niklaus Wirth.

A Practical Introduction to Pascal, |.R. Wilson and A.M. Addyman (Springer-Verlag,
New York, 1979).

Brevity and clarity are the chief merits of this outstanding book. It follows the
traditional textbook format, but a quick reading of its 150 or so pages will help
you to summarize all of the things you know, fill in the vacancies, and tiedown a
few loose ends.

THE ART AND CRAFT OF PROGRAMMING

You now know the main features of a major programming language. You have
seen dozens of examples of short programs. But there is still much to learn about the
practice of programming. Your situation is not unlike that of a person who has
learned to speak a human language, knows a fairly large vocabulary, and has
learned most of the grammar rules. It takes more than that to know how to write well.
First of all, you need to have ideas. Then you need to know how to express them
clearly, logically, concisely and in a well organized fashion.

These same needs occur in computer programming. The ideas in programming
are called algorithms. You know some algorithms already. For example, you know
how to sort a list of strings or numbers, how to shuffle a list, how to play a musical
scale, how to draw graphic objects, and quite a few other useful things. There are
many practical programming problems that you are already equipped to solve.
There are a good many more that you probably cannot handle yet because you
aren’t familiar with the necessary algorithms. So one important direction to move
will be toward the acquisition of knowledge about fundamental algorithms—the
“software tools” that you can apply to many different problems.

362 APPLE PASCAL

The other equally important need is the development of a clear, logical, concise
well-organized style of writing computer programs. If you succeed in this, your
programs will be easy to read, easy to follow, easy to change, and easy to model new
programs upon. Learning good programming style is like learning good writing
style. It takes practice, practice, and more practice. You must see good models of
clear programming style, and you must write and revise, revise, and revise.

The books listed in this section are suggestions for further readings that may
help you to learn some new programming ideas and to write them clearly and
stylishly.

Pascal with Style—Programming Proverbs, H. Ledgard, et al, (Hayden, Rochelle
Park, NJ, 1979).

“Things is 'round to help learn programmers, especially them who don’t want to
pick up no more bad habits, to program good, easy, the first time right, and so
somebody else can figger out what they done and why.” That sentence
introduces a gem of a book that is easy to read and full of wisdom and practical
guidance. A must.

Algorithms + Data Structures = Programs, Niklaus Wirth (Prentice-Hall, Englewood
Cliffs, NJ, 1976).

Jef Raskin, in the preliminary Apple Pascal reference manual, sums up this book
nicely: “St. Nick’s classic, must reading after you've gotten familiar with Pascal.
May well expand your programming horizons.”

Systematic Programming: An Introduction, Niklaus Wirth, (Prentice-Hall, 1973).

This book is of, by, and for computer scientists and students of computer
science. Required reading if you're thinking of entering this field or simply want
to know what it looks like from the viewpoint of a leading practitioner.

A Discipline of Programming, E. Dijkstra, (Prentice-Hall, 1976).

The same comments apply to this as to Wirth's Systematic Programming.
Dijkstra is the person who in 1968 blew the whistle on the GOTO statement and
triggered the birth of “structured programming”, an idea fully incorporated into
Pascal.

LAST WORDS

We hope that you will follow our advice and read what other people have to say
about Pascal and about programming. At the same time, we also hope that your
work in carrying out the activities in this book has taught you the value of

WHERE DO YOU GO FROM HERE? 363

experimentation in learning (and putting to the test what authoritie
s say) about
computers and their programs. & ’

As we said at the outset, the computer, like
the physical world around us, is what it does
and not necessarily what someone says about

it. When in doubt, experiment and see for
yourself.

APPENDIX

A

GETTING STARTED WITH A SINGLE DISK DRIVE

First of all, be patient; you have about an hour of very mechanical tasks ahead of

you. At the end of that time you will have (1) gone through a checklist of your
computer system, (2) learned the “boot-up” procedure for Pascal, (3) learned how to
format blank diskettes before use, and (4) learned how to copy one diskette onto a
formatted blank diskette. This appendix is subdivided into these four parts.

A-1 SINGLE DRIVE CHECKLIST

1

2.

- Do you have at least two blank diskettes? If not, stop here until you get them.

Is your Language System already installed in your computer? If not, stay here
and install it according to the Apple Language System Installation and
Operating Manual (Catalog # A2L0024 (030-0059-00)).

. Do you have a single disk drive connected to your computer? If you have more

than one drive, stop here and go to Appendix B.

. Make sure the power is turned off and the Apple is plugged into a grounded

outlet before touching any circuit cards.

Is your disk drive plugged into the DRIVE 1 connector on the disk controller
card? Take off the top of your Apple and see if the ribbon cable is properly
connected. If not, disconnect carefully and reconnect to the DRIVE 1 connector.
(To remove the top of your Apple, snap the rear corners up vertically. Then slide
the loose top to the rear.)

. Is your disk controller card plugged into your Appleinslot6? Slot 6 is the next to

last slot at the right end of the row of eight slots inside your Apple (viewed from
the front). If the card is in another slot, carefully rock it back and forth to remove
it, and replace it in Slot 6.

. Is your computer connected to a TV receiver or monitor? If not, connect it

directly to a monitor or through an RF modulator and game connector switch to
a TV receiver.

At this point you should be able to answer “yes” to all of the above questions in

the checklist. If so, you are ready to “boot-up” Pascal on your Apple.

365

366 APPLE PASCAL

A-2 SINGLE-DRIVE BOOT-UP PROCEDURE

Your goal here is to get your computer turned on and properly loaded with the
information it needs in order to run the Pascal language and operating system
properly. Your system diskettes contain that information.

1. Turn on the TV power switch. Turn the volume down. If you have a game
connector, switch it to the setting that says GAME or TV SCOREBOARD, or the
like; then turn the TV receiver to the proper channel.

2. If the power to your Appleis on, turn it off. The power switch is on the back and is
easily reached with the left hand. When it is off the POWER light at the lower-left
corner of the keybard is also off.

3. Insertthe APPLES: diskette into the disk drive. Lift the drive door fully open. Hold
the diskette in your right hand, palm up, with your thumb on the printed label.
Insert the diskette carefully into the drive and lower the door until it snaps shut.

4. Turn on the computer power switch. The POWER light will come on, thered “IN
USE” light on the disk drive will come on, and you will hear the drive spinning
and clicking. Onyour TV screen you willimmediately see the phrase “APPLE][".
In a few seconds the screen lights up with at-signs. A second later the disk drive
stops whirring, its red light goes out, and the screen clears except for a white
rectangle at the upper left. Immediately after that, the following text appears:

INSERT ROOT UISK WITH SYSTEM.FASCAL
ON ITy THEN FRESS RESET

(Note: if no such text appears, it means that you are using Apple Pascal Version 1.0
diskettes. See Appendix H for further information.)

5. Remove the APPLE 3: diskette and insert the APPLEO: diskette into the disk
drive. Handle the diskettes carefully, palm up with the thumb on the label. Close
the door.

6. Press the keyboard key marked “RESET”. If nothing happens, hold the CTRL key
down and press the RESET key. The RESET key is in the upper-right corner of
the Apple keyboard; the CTRL key is’at the extreme left. After about 15 seconds
of more red lights, at-signs, and whirring disk sounds, the following message
appears on your TV:

GETTING STARTED WITH A SINGLE DISK DRIVE 367

WELCOME AFFLEOs TO AFFLE II FASCAL 1.1
BRASED ON UCSD PASCAL II.1

CURRENT DATE IS 30-JAN-81

(C) AFFLE COMFUTER INC. 1979y 1980
(C) U.Co REGENTS 1979

About a second later all activity stops and the following line appears at the very top
of your screen:

COMMANING ECUITy RC(UNy FOILEy CCOMPy LCIN

The appearance of this line tells you that you have successfully booted up Pascal
and your computer is ready for your command. (The current date may be different.)

A-3 SINGLE-DRIVE FORMATTING PROCEDURE

The following steps show you how to convert new blank diskettes into properly
formatted blanks for use with your Pascal System. (The same method is used for
recycling old non-Pascal diskettes containing useless information.) It is a good
idea at this time to format as many blank diskettes as you have.

“Formatting” means writing information on the magnetically sensitive surface of
the diskette. The information is put on the diskette in a regular pattern that marks off
the whole surface into a set of concentric circular tracks and subdivides each one of
these into a small number of arcs or sectors. Your computer uses these markers to
put data on the diskette in well defined places so that it can be retrieved correctly
later.

If the COMMAND line is not at the top of your TV screen, go back to part A-2
above and boot up Pascal on your Apple.

1. With the COMMAND: line at the top of your screen, type an X on your keyboard.
The computer will ask “EXECUTE WHAT FILE?”

2. Remove APPLEO: from the drive and replace it with APPLE3:. Handle the
diskettes with care. Close the door fully.

3. Type APPLE3:FORMATTER and press the RETURN KEY. If you find a typing
error before pressing RETURN, use the left-arrow key to backspace over to the
error. Then retype from there on. If all goes well, the red light on the drive will
come on and the disk will whirr. Then the screen will say

368 APPLE PASCAL

AFFLE DISK FORMATTER FROGRAM

FORMAT WHICH DISK (45 Sy 9,,12) 7

If it qoesn’t say this, start over again at step 1. (Apple Pascal refers to the disk drive
that is plugged into drive 1, slot 6, as Volume #4.)

4. Remove APPLES: from the drive and replace it with a blank diskette. Be sure not
toleta d|‘skette with valuable information on it get into the drive by mistake. Set
safely aside all your prerecorded diskettes during the next several steps.

5. Type a 4 on your keyboard and then press the RETURN key. If the diskette was
blank, you will hear it going through the formatting process for half a minute.
The screen will say “NOW FORMATTING DISKETTE IN DRIVE 4.” (If the
diskette had been previously formatted, you'll be asked if you really want to
destroy its contents. Just type N at that point unless you really do want to
destroy the contents, in which case type Y.) When the formatting is complete,
the screen will ask, once more, “FORMAT WHICH DISK (4,5,9..12) 77

6. Remove the formatted diskette from the drive. Use a felt-tip pen (not a ball point

pen or pencil!) and write “Pascal” on its label in small letters, to indicate that it
has been formatted.

7. Place another blank diskette in the drive and repeatsteps 5and 6. Itisa goodidea
to format several diskettes at this time.

8. With the last diskette you have formatted removed from the drive, press the
RETURN key. The computer will say

FUT SYSTEM DISK IN #4 AND FRESS RETURN

9. Put APPLEO: in the drive, close the door and press RETURN.

At the.bottqm ofthe screen, you'llsee “THAT'S ALL FOLKS...”, and the COMMAND:
line will quickly appear at the top of your TV screen. The formatting cycle is over.

A-4 SINGLE-DRIVE COPY PROCEDURE

Now, at last, you are ready to make a back-up copy of the important information
on each of your system diskettes. You will copy one diskette at a time, transferring
the information to one of the blank diskettes you just formatted in Section A-3. Since
you have only a single disk drive, and since one diskette holds far more information
than can fit in the memory of your computer, the transfer has to be done in many

GETTING STARTED WITH A SINGLE DISK DRIVE 369

small steps. Each step consists of (1) moving a portion of the original diskette’s data
into the computer’s main memory, (2) exchanging the original diskette and the
blank in the disk drive, (3) writing the data on the blank, (4) reading the data back to
verify that it was correctly written, and (5) exchanging the diskettes again.

This is the place where you will wish you had either two disk drives or four hands.
However, with patience and perseverence you will be able to make the necessary
back-up copies of your valuable APPLEOQ: and APPLES: diskettes, and any other
Pascal diskettes you want to duplicate, including your BASICS diskettes.

If you do not see the COMMAND: line at the top of your TV screen, better go back
to Section A-2 and boot up Pascal properly. Then return to this section.

You must have at least two properly formatted blank diskettes. If not, go back to
Section A-3.

Make certain that the APPLEO: diskette is in your disk drive. (It will be there if you
started this section immediately after finishing either Sections A-2 or A-3.)

1. With the COMMAND: line on the TV screen, type the F key. The COMMAND: line
goes away and is replaced by the FILER: line.

2. With the FILER: line on the TV screen, type the T Key. The screen responds by
saying “TRANSFER ?”

3. Remove APPLEO: from the disk drive and replace it with the first diskette you
want to copy. For the rest of these directions, we assume you will be copying
“APPLES3:"”, but the next time around, remember to substitute “APPLEOQ:” or
whatever other diskette you are copying for “APPLES3:"” in steps 4 - 11 below.

4. Type the name of the diskette you are copying, followed by the RETURN key.
(APPLES: the first time around.) Be sure to type the colon as part of the diskette
name. The screen will respond by asking “TO WHERE ?” (If you accidentally
leave out the colon or make another typing error, the screen will say “NO SUCH
VOL ON-LINE <SOURCE>". You must then start over at step 2.)

5. Answer by typing BLANK: (including the colon) on your keyboard and pressing
RETURN. “BLANK:” is the name the formatter automatically gives to newly
formatted diskettes. The screen responds by asking “TRANSFER 280 BLOCKS
? (Y/N)". If you get any other message, follow the instructions and when the
FILER line appears, go back to step 2.

6. Type Y on your keyboard. (The N answer would be used to prevent the copy
operation in case you decided not to go ahead.) After a while the screen says

FUT IN BLANK?S

TYFE < SFACEX TO CONTINUE

(If instead, you get any other message, it means that you made a typing error back in
step 5. To correct ityou have to reboot as shown in Section A-2 and start over at step

1)

370 APPLE PASCAL

7. Remove the original diskette (APPLE3:) and replace it with the blank diskette.
Then press the spacebar. The screen asks “DESTROY BLANK: ?” givingyou a
last chance to prevent the operation. For example, if by mistake you forgot to
take APPLE3: out before pressing the spacebar, the screen would ask
“DESTROY APPLE3: ?”, and you would be glad to type N and start over at step 2.

8. Type Y on your keyboard. The actual copying now begins. Your Apple cannot
hold all of the original diskette contents in memory, soitonly copiesasmall part
at a time on the duplicate. In a short time, the screen will say

FUT AFFLE3: IN UNIT #4
TYFE <8SFACE> TO CONTINUE

9. Remove BLANK:, replace with APPLE3: and press the space bar. In a few
moments the screen will say

FUT BLANK! IN UNIT #4
TYFE <SFACE> TO CONTINUE

10. Remove APPLES3:, replace with BLANK: and press the spacebar. (It'sagoodidea
to keep one diskette in one hand, and the other diskette in the other hand.)
Repeat steps 9 and 10 about 20 times. Finally the screen announces

AFFL

m

23 == BLANK?

.-

11. Remove BLANK: from the drive and write APPLE3: on the label with a felt-tip
pen.

12. Press RETURN to clear the screen, go back to step 2, and repeat all steps with
APPLEQO: in place of APPLE3:. You should always have at least one back-up copy
of each of these two diskettes.

13. Put your original, write-protected diskettes on a shelf away from your computer.
Never use them except to make copies.

If you came to this appendix from Session 1 of this book, you are now ready to return
there, at last, and resume learning Pascal. Before doing that, however, you may be
ready for a break, and now is a good time to take one. Turn off the power on your
computer. Whenever you're ready, turn back to Section 1-1

APPENDIX

GETTING STARTED WITH A DUAL DISK DRIVE

First, consider yourself lucky. Getting started with a dual-disk drive system takes
about a third as many steps as with asingle drive. You should be through in about 20
minutes. On the other hand, the steps are very mechanical and uninforming, so
accuracy and patience are called for.

After you have completed this appendix you will (1) have gone through a
checklist of your computer system, (2) learned the “boot-up” procedure for a dual-
disk system, (3) learned how to format blank diskettes before use, (4) learned how to
use the two drives to copy one diskette on to a formatted blank diskette, and (5)
learned how to disconnect your second drive so as to convert back to the single-
drive system upon which the main body of this book is based.

Readers who have only one disk drive should take comfort from item 5 above.
Once past the initial start-up business of making back-up copies of APPLEO:
through APPLES:, everyone will be on the same basis. In fact, there is no particular
advantage to having two drives while you are learning to write and run Pascal
programs.

B-1 DUAL-DRIVE CHECKLIST

1. Do you have at least two blank diskettes? If not, stop here until you get them.
(Four blanks are better.)

2. Is your Language System already installed in your computer? If not, stop here
and install it according to the Apple Language System lInstallation and
Operating Manual (Catalog # A2L0024 (030-0059-00)).

3. Do you have two disk drives connected to your computer? If you have only one,
you're in the wrong appendix; go back to Appendix A.

4. Make sure the power is turned off and the Apple is plugged into a grounded
outlet before touching any circuit cards.

371

372 APPLE PASCAL

5. Are both drives connected into the same disk controller card? Take off the top of
your Apple and see whether the ribbon cables are properly connected. (To
remove the top, snap the rear corners vertically up. Then slide the loose top to
the rear.) If the cables are connected to different cards, carefully disconnect one
cable and reconnect it to the other card. Note carefully which cable is connected
to “Drive 1” and which goes to “Drive 2”. Mark the disk units accordingly.

6. Is your disk controller card plugged into your Apple in Slot 62 Slot 6 is the next to
last slot at the right end of the row of eight slots inside your Apple (viewed from
the front). If the card is in another slot, carefully rock it back and forth to remove
it, and replace it in Slot 6.

7. Is your computer connected to a TV receiver or monitor? If not, connect it
directly to a monitor or through an RF modulator and game connector switch to
a TV receiver.

At this point you should be able to answer “yes” to all of the above questions in the
checklist. If so, you are ready to “boot-up” Pascal on your Apple.

B-2 DUAL-DRIVE BOOT-UP PROCEDURE

Your goal here is to get your computer turned on and properly Icaded with the
information it needs in order to run the Pascal language and operating system
properly. Your system diskettes contain that information.

1. Turn on the TV power switch. Turn the volume down. If you have a game
connector, switch it to GAME, TV SCOREBOARD, or the like. Turn the TV
receiver to the proper channel.

2. If the power to your Apple is on, turn it off. The power switch is on the back and is
easily reached with the left hand. When it is off the POWER lightatthe lower-left
corner of the keyboard is also off.

3. Insert the diskette marked “APPLE1:” in drive 1. Lift the drive door fully open.
Hold the diskette in your right hand, palm up, with your thumb on the printed

label. Insert the diskette carefully into the drive and lower the door until it snaps
shut.

4. Insert the diskette marked “APPLEZ2:” into drive 2. Close the door fully.
5. Turn on the computer power switch. Everything is automatic from here on, but

here is what you should see. The keyboard POWER light will come on, the red
“IN USE” light on drive 1 will come on and you will hear the drive spinning and

GETTING STARTED WITH A DUAL DISK DRIVE 373

clicking. On your TV screen you will see the phrase “APPLE][”. In afev_v secqnds
the screen lights up with at-signs. A second later the screen clears,.dlsk drive 1
stops whirring, its red light goes out, and disk drive 2 and its red light turn'on
briefly. Then drive 1 comes back on and after a few more seconds, the following
message appears on your TV screen:

WELCOME AFFLELy TO AFFLE IT FASCAL 1.1

HASETD ON UCSD FASCAL T1.1
CURRENYT DATE IS 31-JAN-81
ey AkFL MEUTER INC. 1979y 1980

() U 0o TS 1979

About a second later, all activity stops as the following line appears at the very top of
your screen:

COMMAND S ECDTTy ROUNy FOTLEY CCOMPY LCIN

It signals to you that you have successfully booted up Pasga| on your computer,
which is now awaiting your command. (The date may be different.)

B-3 DUAL-DRIVE FORMATTING PROCEDURE

The following steps show you how to convert new blank diskettes intp properly
formatted blanks for use with your Pascal System. (The same method is u§ed for
recycling old Pascal diskettes containing useless information.) It is a good idea at
this time to format as many blank diskettes as you have. N

“Formatting” means writing information on the magnetically sensitive surface of
the diskette. The information is put on the diskette in a regular pattern that marks off
the whole surface into a set of concentric circular tracks and subdivides each one of
these into a small number of arcs or sectors. Your computer uses these markers to
put data on the diskette in well defined places so that it can be retireved correctly
later.

If the COMMAND: line is not at the top of your TV screen, go back to part B-2
above and boot up Pascal on your Apple.

1. With the COMMAND: line at the top of your screen, type an X on your keyboard.
The computer will ask “EXECUTE WHAT FILE?"

374 APPLE PASCAL

2. Remove APPLE2: from drive 2 and replace it with APPLE3:. Handle diskettes and
drive doors with care. Close the door fully. (Leave drive 1 as is throughout the
formatting process.)

3. Type APPLE3:FORMATTER and press the RETURN key. If you find a typing
error before pressing RETURN, use the left-arrow key to backspace over to the
error. Then retype from there on. If all goes well, the red lighton drive 2 will come
on and the disk will whirr. Then the screen will say

AFFLE DTSK FORMATTER FROGRAM

FORMAT WHICH DISK 4y 5y 9,,12)

If it doesn't say this, start over again at step 1. (Apple Pascal refers to the disk drive
that is plugged into drive 1, slot 6, as Volume #4. It refers to drive 2,slot6,asVolume
#5. Now is a good time to label your drives accordingly.)

4. Remove APPLES3: from drive 2 and replace it with a blank diskette. Be surenotto
let a diskette with valuable information on it getintodrive 2 by mistake. Set safely
aside all your prerecorded diskettes during the next several steps.

5. Type a 5 on your keyboard and then press the RETURN key. If the diskette was
blank, you will hear it going through the formatting process for half a minute.
The screen will say “NOW FORMATTING DISKETTE IN DRIVE 5.” (If the
diskette had not been previously formatted, you'll be asked if you really want to
destroy its contents. Justtype N at this point unless youreally do want to destroy
the contents, in which case type Y.) When the formatting is complete, the screen
will ask, once more, “FORMAT WHICH DISK (4,5,9.12) 7

6. Remove the formatted diskette from drive 2. Use a felt-tip pen (not a ball-point
pen or pencil!) and write “Pascal” on its label in small letters, to indicate that it
has been formatted.

7. Place another blank diskette in drive 2 and repeat steps 5 and 6. It is agood idea
to format several diskettes at this time.

8. With the last diskette you have formatted removed from drive 2, press the
RETURN key. At the bottom of the screen, you'll see “THAT'S ALL FOLKS...”,
and the COMMAND: line will quickly, appear at the top of your TV screen.
Formatting is over.

B-4 DUAL-DRIVE COPY PROCEDURE

Now, at last, you are ready to make a back-up copy of the important information
on each one of your system diskettes. You will copy one diskette at a time,
transferring the information to one of the blank diskettes you just formatted in

GETTING STARTED WITH A DUAL DISK DRIVE 375

Section B-3. The original system diskette will gointodrive 1 and the blank into drive
2. Since a diskette holds far more information than can fit in the memory of your
computer, the transfer has to be done in small steps; but the process is automatic
once you begin it. Each step consists of (1) moving a portion of the original
diskette’s data into the computer’'s main memory, (2) writing iton the blank diskette,
and (3) reading the data back to verify that it was correctly written.

It you do not see the COMMAND: line at the top of your TV screen, better go back
to Section B-2 and boot up Pascal properly. Then return to this section.

If you do not have at least two blank formatted diskettes, go back to Section B-3.

Make certain that the APPLE1: diskette is in drive 1. (It will be there if you started
this section immediately after finishing either Sections B-2 or B-3.)

1. With the COMMAND: line on the TV screen, type the F key. The COMMAND: line
goes away and is replaced by the FILER: line.

2. With the FILER: line on the TV screen, type the T key. The screen responds by
saying TRANSFER ?

3. Remove APPLE1: from disk drive 1 and replace it with the first diskette you want
to copy. For the rest of these directions, we assume you will be copying APPLE3:
but the next time around, remember to substitute APPLEO: or whatever diskette
you are copying for APPLES: in steps 4 - 9 below.

4. Type the name of the diskette you are copying followed by the RETURN key.
(APPLES: the first time around.) Be sure to type the colon as part of the diskette
name. The screen will respond by asking TO WHERE ? (If you accidentally
leave out the colon or make another typing error, the screen will say NO SUCH
VOL ON-LINE <SOURCE>. You must then start over at step 2.

5. Remove whatever diskette is in drive 2 and replace with a formatted blank
diskette. This a critical step! Your computer thinks that you intend whatever
diskette is in drive 2 to be treated as a blank. You wouldn’t want to let a valuable
diskette remain in drive 2 at this point.

6. Answer the TO WHERE ? question by typing BLANK: on your keyboard and
then pressing RETURN. Be sure to include the colon after BLANK. BLANK: is
the name the formatter automatically gives to newly formatted diskettes. The
screen responds by asking TRANSFER 280 BLOCKS ? (Y/N). If you get any
other message, go back to step 2.

7. Type the Y key on your keyboard. (The N key would be used if you decided to
prevent the copy operation forany reason.) Your Y answer means that you want
to copy the whole diskette. The computer checks to make sure the diskettes you
named are both on-line and in the correct drives. The computer gives you one
last chance to confirm that you really know what you are doing. It asks
DESTROY BLANK: ? to remind you that the copy operation will destroy the
contents of whatever was on the destination diskette. Since that is exactly what
you want to do, go to step 8. If you got any other message, it means you either
made a typing error or put the wrong diskette in drive 2. Either way, leave the
diskettes alone, press the spacebar, and start over at step 2.

376 APPLE PASCAL

8. Type Y on your keyboard. Your computer spends the next 30 seconds or so
copying the contents of the diskette in drive 1 on the blank diskette in drive 2.
Finally the screen announces

9. Remove BLANK: from drive 2 and write APPLE3: on the label with a felt-tip pen.

10. Repeat the whole process, by pressing RETURN and going to step 2, for the
other system diskettes. Be sure to remember to substitute their names for
APPLES: in all the above steps. A copy of APPLEOQ: is essential.

11. Putyour original, write-protected diskettes on a shelf away from your computer.
Never use them except to make copies.

12. Turn off the power on your computer.

B-5 CHANGING BACK TO A SINGLE-DRIVE SYSTEM

Except for making duplicate copies of diskettes, this book is written for use with a
single-drive system. While it is possible to leave both drives connected and pretend
that you have a single-drive system, sooner or later you will put a diskette in the
wrong drive and get very confusing results. Our strong advice is that you follow the
steps below for disconnecting and putting away one of your disk units temporarily.

1. If the POWER light is on, turn off the power switch on the rear of your computer
but leave it plugged into a grounded outlet. The keyboard POWER light will go
out.

2. Remove the lid of your computer.

3. Carefully remove the ribbon cable from the card connector labelled DRIVE 2.
(You may have to remove the card to do this. If so, be sure to putitback in slot6.)

4. Replace the lid.

5. Put the unused disk drive away on a shelf.

If disconnecting drive 2 turns out to be very inconvenient, perhaps because
someone else needs to use the same comptuer with two drives, then you can treat
drive 1 as if it were the only drive. We advise you to turn drive 2 around and place it as
far away as the cable will allow, so that you don’t accidentally put a diskette into it.
Then make sure there is no diskette in it when you boot up Pascal. Use the boot-up
procedure in Section 1-1, with the APPLEO: and APPLES: diskettes. In either
situation, you will have no further need for the APPLE1: and APPLE2: diskettes while
you are learning Pascal with this book. Set these diskettes aside for the time you
resume using drive 2 as explained in Appendix G.

APPENDIX

C

NAMES, RESERVED WORDS, AND BUILT-IN NAMES

A name in Pascal is any sequence of characters that begins with a letter of the
alphabet and is followed by zero or more characters which are either letters or
decimal digits. Listed below are examples of legal and illegal names.

Legal Names lllegal Names
WRITE HOT-SHOT
X HOT SHOT
A23 23A
AVERYLONGNAME A$

PIC392A PIC.39

In Apple Pascal, only the first eight characters of long names are significant. For
example, the Apple Pascal compiler would treat the names NUMBEROFEMPLOY-
EES and NUMBEROFHOLIDAYS as equivalent to one another and to the name
NUMBEROF. The usual resultis acompile-time error message that complains about
an “identifier declared twice”.

Pascal names fall into one of three categories: reserved words, built-in words,
and programmer-defined names. Reserved words, as the name implies, have a use
and a meaning that is an invariant part of the Pascal language. You may not use a
reserved word as the name of a variable, constant, procedure, or the like. Built-in
words have a predefined meaning within Apple Pascal, but is it legal to change their
meanings by taking them over as names of your own variables, etc. If you do so, they
lose their former meaning.

The following table contains a complete list of all Pascal resrved words and built-
in words. The words shown in bold face are the ones that you have used in this book.
(Forinformation about the other words, see the “Apple Pascal Language Reference
Manual”, especially Chapters 3, 5, and 7.) For specific page references to the use of
the bold-face words in the present book, see the Index headings, “Built-in words”,
and “Reserved words”.

377

378 APPLE PASCAL

Reserved
Words

PROGRAM

UNIT
INTERFACE
IMPLEMEN-

TATION

USES

LABEL

CONST

TYPE
PACKED
ARRAY
RECORD
SET
FILE

VAR

PROCEDURE
EXTERNAL
FORWARD
SEGMENT

FUNCTION

BEGIN

FOR
TO
DOWNTO
DO

REPEAT
UNTIL
WHILE
IF
THEN
ELSE
CASE
OF
WITH
GOTO
END

DIV
MOD

AND
OR
NOT
IN

U QQ o D

Built-In
Procedures

CLOSE
DELETE
EXIT
FILLCHAR
GET
GOTOXY
HALT
INSERT
MARK
MOVELEFT
MOVERIGHT
NEW

PAGE

PUT

READ
READLN
RELEASE
RESET
REWRITE
SEEK
UNITCLEAR
UNITREAD
UNITWAIT
UNITWRITE
WRITE
WRITELN
NOTE
RANDOMIZE
TTLOUT
CHARTYPE
DRAWBLOCK
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO
VIEWPORT
WCHAR
WSTRING

Built-In
Functions

Boolean

a
a

9

EOF

EOLN

OoDD
UNITBUSY
BUTTON
KEYPRESS
SCREENBIT

Char

CHR

Integer

- - -

t

BLOCKREAD
BLOCKWRITE
IORESULT
LENGTH
MEMAVAIL
ORD

POS

ROUND
SCAN
SIZEOF
TREESEARCH
TRUNC
PADDLE
RANDOM
TURTLEANG
TURTLEX
TURTLEY

ABS
PWROFTEN
SQR

ATAN

cOos

EXP

LN

LOG

SIN

SQRT

String
* CONCAT

COPY
STR

Other

PRED
SucCcC

Other
Built-Ins

Constants
FALSE
TRUE
MAXINT
NIL

g NONE

g WHITE

BLACK

REVERSE

RADAR

BLACK1

GREEN

VIOLET

WHITE1

BLACK2

ORANGE

BLUE

WHITE2

[[eJleJleNloNioRlo Rl FloNioNlo Nl]

Types
BOOLEAN
CHAR
INTEGER
INTERACTIVE
REAL
STRING
TEXT

g SCREENCOLOR

Variables
INPUT
KEYBOARD
OUTPUT

Units
APPLESTUFF
CHAINSTUFF
TRANSCEND
TURTLEGRAPHICS

APPENDIX

D

COMMAND STRUCTURE OF APPLE PASCAL

Each command of the Apple Pascal Operating System consists of a single
character, usually generated by a single key-press on the Apple keyboard. The
meaning of a given character depends on the context or “level” of the system that
you are currently at. The set of levels and commands are organized in a tree-
structured fashion, the main trunk of which is the COMMAND level. From
COMMAND level you can climb out some branch to reach any other level or
command.

The two main branches connected to the COMMAND trunk are the EDIT and
FILER levels, each of which contains many other branches or commands. Most of
the operating system commands you have learned in this book are EDITOR and
FILER commands. The two tables which follow provide a complete list of all the
levels and commands of the Apple Pascal Operating System. Table D-1 shows the
EDITOR command structure, and Table D-2 shows the FILER and all other
command levels that can be reached from the main trunk, including commands that
can be used at any level.

Commands shown in bold face are ones that you have used in this book. (For
information about the other commands, see the “Apple Pascal Operating System
Reference Manual”. For specific page references to the use of the bold-face
commands in the present book, see the Index—especially the “E(dit level” and
“F(iler” headings.

379

380 APPLE PASCAL

Table D-1 Complete table of the EDITOR levels of Apple Pascal. Those features

studied in this book are shown in bold face type.

E(ditor

Q(uit editor and

U(pdate workfile

E(xit with no update

R(eturn to editor

W(rite to named file
E(xit from EDITOR
R(eturn to EDITOR

S(ave with same name

Cursor Moving Commands

Exit to escape
from accidental
entry

ESCRETURN or QE
R

Q
RETURN

Right-arrow (Move cursor right)
Left-arrow (Move cursor left)
CTRL-L (Move cursor down)

CTRL-O (Move cursor up)

RETURN (Move cursor to beginning

of next line)

Spacebar (Move cursor to next

character)
J(ump to
E(nd of text
B(eginning of text
M(arker in file
P(age move
=(start of |, F, R block
F(ind text pattern as:
L(iteral characters
T(oken
S(ame-string option

ESC

Exit to escape
from accidental

entry
Text Changing Commands

I(nsert text ESC
CTRL-C (Normal exit)

D(elete text ESC
CTRL-C (Normal exit)

C(opy text from ESC
B(uffer
F(ile

X(change characters ESC
CTRL-C (Normal exit)

R(eplace text in mode of ESC
L(iteral replacement ESC
T(oken replacement ESC

V(erify replacement
S(ame-string option
Z(ap deletion

Formatting Commands
A(djust indentation
L(eft
C(enter
R(ight
Cursor control keys
CTRL-C (Normal exit)
M(argin set

Miscellaneous Editing Commands
S(et ESC
M(arker RETURN
E(nvironment Spacebar
A(utomatic indentation
F(illing
(eft margin set
(ight margin set
(aragraph margin set
(oken default
C(ommand character
V(erify editor status

L
R
P
T

COMMAND STRUCTURE OF APPLE PASCAL 381

Table D-2 Complete table of other command levels of Apple Pascal. Those
features studied in this book are shown in bold face type.

Exit to escape
from accidental

entry
F(iler
Q(uit the filer F
G(et a file from diskette RETURN
S(ave the workfile RETURN
N(ew workfile RETURN
W(hat is the workfile?
V(olumes on line?
L(ist the directory RETURN
E(xtended directory list RETURN
C(hange name RETURN
R(emove file from diskette RETURN
T(ransfer a file RETURN
D(ate setter RETURN
P(refix for volume name RETURN
B(ad blocks on diskette RETURN
X(amine bad blocks? RETURN
K(runch files together RETURN
M(ake directory entry RETURN

Z(ero diskette and reformat RETURN
? Show additional commandsRETURN

C(ompile workfile

R(un program in workfile

X(ecute compiled program

I(nitialize the system

A(ssemble 6502 program

L(ink program segments

U(ser restart

H(alt and cold reboot

M(ake exec file

S(wap option

Commands Available at Any Level
RESET Attempts cold reboot of Pascal
CTRL-A Toggle to other half of CTRL-A
Pascal page

CTRL-S Stop and restart programCTRL-S
having screen output

CTRL-Z Set horizontal scroll CTRL-A

CTRL-@ Warm reboot

CTRL-F Flushes output buffer

CTRL-E Enables reverse-video mode
and toggles keyboard between
upper and lower case

CTRL-W Enables reverse video and
sets keyboard to upper case
for nextcharacteronly

Commands Available at Any Level Except EDIT
CTRL-R Enables video reverse
CTRL-T Disables video reverse and
setskeyboard to upper case

APPENDIX

_E

SIZE AND QUANTITY LIMITS IN APPLE p/SCAL

DATA LIMITS
Range of CHAR values: CHR (0)..CHR (255)

Range of INTEGER values: -32768..32767

Range of long integers: as many decimal digits as declared, up toa mgImum of

36, not including the sign.

Range of REAL values: -3.40282E38..3.40282E38
Smallest positive REAL value: 1.17549E-38

?; Precision of REAL values: approximately 7 decimal digits.
Maximum STRING length: 255 characters.

Largest SET: 512 members. Sets of integers must be in the range 0.‘511

BUILT-IN FUNCTION AND PROCEDURE RANGES
Range of RANDOM numbers: 0..32767
Range of PADDLE numbers: 0..255
Range of NOTE pitch values: 0..255
Range of musical pitch values: 1..50
Range of NOTE duration values: 0..255

Range of PWROFTEN parameter: 0..37
383

384 APPLE PASCAL

TEXT PAGE DIMENSIONS
Horizontal range: 0..79
Vertical range: 0..23

Upper left corner: (0, 0)

Apple window looks at only 40 characters of the full text page.

GRAPHIC PAGE DIMENSIONS
Horizontal range: 0..279
Vertical range: 0..191

Lower left corner: (0, 0)

MEMORY LIMITS AND SIZES

All memory units are given in words. One word is equal to two bytes.

Data type

Boolean

CHAR

INTEGER

REAL

STRING

STRING [N]

INTEGER [N]

ARRAY [1..100] OF INTEGER
ARRAY [1..100] OF 0..255
ARRAY [1..100] OF 0..15
ARRAY [1..100] OF CHAR
PACKED ARRAY [1..100] OF 0..255

PACKED ARRAY [1..100] OF 0..15 .

PACKED ARRAY [1..100] OF CHAR
FILE

2+

Words used

RO OO

4
1+NDIV 2
(N-1)DIV 4

100

100

100

100

50

25

50

310

SIZE AND QUANTITY LIMITS IN APPLE PASCAL 385

Maximum space for user program and variables: 18,850 words without swapping
and 19,950 with swapping.

Opening and closing a file does not change the amount of available memory.
Setting a string variable equal to the null string (') does not regain any available
memory.

OTHER LIMITS
Largest editable file: 34 blocks without swapping and 40 blocks with swapping.
Maximum number of procedures or functions in a single compilation: 149

Maximum size of a compiled procedure or function: 600 words plus any local
variables.

APPENDIX

F

ORD AND CHR VALUES OF ASCII CHARACTER SET

Within a running Pascal program, all character values from CHR (0) through
CHR (255) are legal and are distinct from one another. However, not all of them may
be input from the keyboard nor written on the screen. This table lists the 128
characters of the American Standard Code for Information Interchange (ASCII)
character set and, for each one, shows the ORD value, the Apple key that generates
the character, whether that key can be read by aPascal program, and what happens
when a Pascal program writes the character on the Apple screen.

Character values CHR (128) through CHR (255) have no standard ASCII names
or graphic symbols and may not be typed on the Apple keyboard. If such a character
is written on the Apple screen by a WRITE (CH) callin a Pascal program, the resultis
the same as for the character whose ORD value is 128 less.

ORD ASCIlI Apple Notes
value name key

0 NUL CTRL-@ 1,2A
1 SOH CTRL-A 1,3,A
2 STX CTRL-B A
3 ETX CTRL-C 1,4A
4 EOT CTRL-D A
5 ENQ CTRL-E 1,5A)
6 ACK CTRL-F 16.A For explanation of notes,
7 BEL CTRL-G B see pages 388-389.
8 BS CTRL-H
left-
arrow
9 HT CTRL-I A
10 LF CTRL-J D
11 VT 1,A
12 FF CTRL-L E
13 CR CTRL-M 1,8,F
RETURN
14 SO CTRL-N A
15 Sl CTRL-O A

387

388 APPLE PASCAL

ORD

value
16
17
18
19
20
21

22
23
24
25
26
27
28
29

30

31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

ASCII
name
DLE
DCH1
DC2
DC3
DC4
NAK

SYN
ETB
CAN
EM
SuB
ESC
FS
GS

RS

us
SP

ONOOO A WN = O

Apple
key
CTRL-P
CTRL-Q
CTRL-R
CTRL-S
CTRL-T
CTRL-U
right-
arrow
CTRL-V
CTRL-W
CTRL-X
CTRL-Y
CTRL-Z
ESC

CTRL-
SHIFT-M

CTRL-
SHIFT-N

space-
bar

4+ o — o~

O~NOO A WN = O

Notes

A
1,10,A
11,A

1,12,A

INPUT NOTES

The following notes refer to the effect of
attempting to type a particular Apple keyboard
character in response to the statement READ
(KEYBOARD, CH), where CH is of type CHAR. In
the accompanying table, the absence of a note
number in the last column means that input
succeeds and that CH is equal to the correspond-
ing ASCII character. Presence of a note number
means that you should read the numbered note
below.

1.Character cannot be input from Apple key-

board.

2.Causes a warm reboot.

3.Togles Apple window left or right; clears

horizontal scroll mode.

4.Sets EOF and EOLN to TRUE.

5.Toggles alphabetic keys between upper and

lower case; enables reverse-video display of
upper case letters subsequently written on
Apple screen.

6.Toggles keyboard between locked and un-

locked state.
7.0kay for single character READ, but in string
READLN, deletes previous character.

8.Sets EOLN to TRUE; CH = SP.

9.Toggles screen between locked and un-
locked state. In locked state, keyboard input
goes into a buffer and is used as soon as
screen is unlocked.

10.Enables upper case for next character only.

11.Okay for single character READ, but for string
READLN, deletes all characters to the start of
the string.

12.Sets horizontal scroll mode.

13.Keyboard must be in lower case mode. See
note 5.

ORD ASCII
value name
57 9
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

| >_'/'—’N-<><§<C—IU):UO'UOZ§VXC—_IQ‘HmUOUJ:D@'\)\/ oA

0O Q0T

Apple
key

9

N'<><§<C—GU)IO'UOZ§'_X‘—_IOT‘FHUOW>@"3V AT

CTRL-K

SHIFT-M

mTMoOOwW>»

Notes

1,P

1,Q

1,N

13,N
13,N
13,N
13,N
13,N
13,N

ORD AND CHR VALUES OF ASCII CHARACTER SET 389

OUTPUT NOTES

The following notes refer to the effect of
attempting to WRITE a particular character on
the Apple screen by means of a WRITE (CH)
statement, where the value of CH is a character.
In the accompanying table, the absence of a note
letter in the last column means that output
succeeds and that the corresponding ASCII
symbol is displayed on the screen at the current
cursor position, and the cursor is moved one
position to the right. Presence of a note letter
means that you should read the corresponding
note below.

. Output causes no effect on the Apple screen.

. The “bell” is beeped.

. Cursor moves left one character. (backspace)

. Cursor moves down one line. (linefeed)

. Cursor moves “home” (top, left corner);

screen is erased. (formfeed)

. Cursor moves to extreme left and down one

line. (newline)

G. Character following CH is lost. Instead, its
ORD value minus 32 is used to indent the
following characters that number of spaces.

H. Sets reverse-video display mode for upper

case letters.
Sets regular video display mode.

. Cursor moves to “home”.

. Cursor moves right one character.

. Deletes following characters to end of line:

cursor moves to “home”.

. Cursor moves up one line.

Upper case character is displayed.
Reverse-slash character is displayed.
. Underscore character is displayed.

mooOw>»

-n

r X« —

ovzzZ

]
390 APPLE PASCAL g

APPENDIX

ORD ASCII Apple Notes G
value name key

04 n H 1an USING TWO DISK DRIVES
105 i ! 13N

106 j J 13N

107 Kk K 13,N

108 | L 13N

109 m M 13,N For explanation of notes,

110 n N 13,N see pages 388-389.

111 o 0 13N

112 p P 13,N

113 q Q 13N You only need one disk drive throughout this book while you are learning Pascal
114 r R 13N on the Apple computer. Although a single drive is no handicap in the learning
115 s S 13,N stages, you will soon discover its limitations as you begin to develop longer and
116 t T 13N more numerous programs. These limitations are due to the fact that the APPLEQ:
117 u U 13N diskette has very little room left over for your programs. The system programs take
118 v v 13N 248 blocks of the total of 280 blocks of diskette storage, leaving you only 32 blocks.
119 w w 13N Since each text file uses a minimum of 4 blocks and each code file, a minimum of 2
120 X X 13,N blocks, you cannot store many programs or data files on APPLEQ:. That is the reaon
121 y Y 13,N why we show you how to save programs on a second diskette. (See Section 4-9.)
122 z z 13N You can increase your storage capacity on APPLEOQ: by about 50% if you are
123 { 1N willing to do without the compiler error messages. Simply remove (Type R under the
124 | 1N FILER) SYSTEM.SYNTAX from APPLEOQ: and then K(runch the diskette. When you
125 ¥ 1N get compiler errors, you will continue to be told the error number, but you will have
126 ~ 1.N to turn to the back of this book to read the text of the message.

127 DEL 1,N

Since none of the other system files can be removed without making your use ofa
single-drive system either inconvenient or impossible, your only recourse will be to
invest in a second drive, and we recommend that you do so if you intend to write
many Pascal programs in the future. The rest of this Appendix explains differences
between using single-drive and dual drive systems.

The dual-drive boot-up process, explained in detail in Section B-2 of Appendix
B, is quite similar to the single-drive boot-up. The only difference is that diskette
APPLE1: goes into drive 1 and APPLE2: goes into drive 2 before turning on the
power switch. When you power up, the entire boot-up process is automatic andyou
do not need to touch the diskettes again

If you press the RESET key at any time, it causes a complete “cold boot”, just as
though you had turned off the power switch and turned it back on. With a single-
drive system and APPLEQ: in the drive, you getinto trouble: a cold boot requires that
you have APPLES3: in your drive. But with a dual-drive system you normally have
both APPLE1: and APPLE2: in the drives, and so the cold reboot succeeds. (Youstill
lose what is in your workspace, or course.)

In order to establish a correspondence between what we say in the main part of
this book and what you will do with a dual-drive system, you need only substitute
“APPLE1:" for “APPLEQ:” in almost every place in the book. In asingle-drive system,

APPLEO: is what is called your “boot disk”. In a dual-drive sytem, APPLE1:, which

must be placed in drive 1, is your boot disk. Listed below are the system files
supplied on these two diskettes:

391

392 APPLE PASCAL

APPLEQ: APPLE 1:
SYSTEM.APPLE
SYSTEM.PASCAL SYSTEM.PASCAL
SYSTEM.MISCINFO SYSTEM.MISCINFO
SYSTEM.COMPILER
SYSTEM.EDITOR SYSTEM.EDITOR
SYSTEM.FILER SYSTEM.FILER
SYSTEM.LIBRARY SYSTEM.LIBRARY
SYSTEM.CHARSET SYSTEM.CHARSET
SYSTEM.SYNTAX SYSTEM.SYNTAX
SYSTEM.WRK.TEXT SYSTEM.WRK.TEXT
SYSTEM.WRK.CODE SYSTEM.WRK.CODE

The major differences are that APPLE1: contains SYSTEM.APPLE, but it lacks
SYSTEM.COMPILER. The file SYSTEM.APPLE (which is also on APPLES:) is
necessary for the first stage of the cold boot-up. Furthermore, it has to be located on
the diskette in drive 1 if this stage of boot-up is to succeed. So you can use either
APPLE3: or APPLET: (or any other diskette you create that contains SYSTEM.AP-
PLE) placed in drive 1 to initiate the boot-up.

To complete the boot-up, drive 1 must hold a diskette containing the files
SYSTEM.PASCAL and SYSTEM.MISCINFO. If they are missing, then the computer
will halt and ask you to “insert the boot disk” into drive 1, which the Pascal system
refers to as “volume 4”; drive 2 is “volume 5". Thus, if you start the boot-up with
APPLES3: then you need to put APPLEQ: into the drive to complete the boot-up. But if
you start with APPLE1:, then there is no need to switch diskettes in drive 1. APPLE1:
contains all the necessary files for a complete bootup.

The long file SYSTEM.COMPILER, which is missing from APPLE1:, is contained
on APPLE2: (along with several additional files not contained on any of the other
system diskettes). The result is that APPLE1: contains 75 blocks of free space for
your programs and data, and APPLE2: contains 112 blocks more. The additional
free space on APPLE1: allows you to write and edit quite long workfiles, while the
space on APPLEZ2: is best used to save programs and data files.

The method of saving programs described in Section 4-9 works about the same
way with a dual-drive system. The two differences are that the diskette for program
storage is normally APPLE2: rather than PROGRAM:, and that there is no need to
remove any diskette from the drives. These same two changes apply to the method
given in Sections 4-10 and 12-1 for recalling saved programs from a second
diskette. There are other methods of saving and recalling diskette text files (see the
G(et and S(ave commands in the FILER) with a dual-drive system. You can read
about them in the “Apple Pascal Operating System Reference Manual.”

With this understanding, you are ready to install drive 2 in your Apple computer.
To soso, simply turn off the power switch and reverse all the steps given at the end of
Appendix B.

APPENDIX

H

DIFFERENCES BETWEEN VERSIONS 1.0 AND 1.1 OF
APPLE PASCAL

Apple Pascal diskettes sold with Apple Language Systems prior to November
1980, contained Version 1.0. Although that edition of the software contains a’
number of known bugs, as well as other differences from Version 1.1 you may still
use this book with Version 1.0 diskettes. Before starting each session ,however you
should check this appendix for any differences that will show up iny that sessyion.

SESSION 1

Page 11.

At the end of Step 4 of the boot-up process, no message appears on the screen.
Proceed with Step 5.

Page 12.

A.t the end of Step 6 of the boot-up process the “WELCOME” message is slightly
different.

Page 13, top.

The “version identifier” in square brackets is II.1 instead of 1.1.
Page 13, bottom.

The “version identifier” for the FILER is C.2.
Page 16, top.

The right half of the Pascal page contains only the two letters LT. The S(WAP
and M(AKE EXEC commands are not available in Version 1.0.

SESSION 2
Page 21, bottom.

The “version identifier” for the EDITOR is E.6F.
393

394 APPLE PASCAL

Page 23, bottom.
The RESET key is somewhat less of a disaster in Version 1.0. You still lose any
text that was in your workspace, but you don’t have to turn off the power switch
and do the complete “cold reboot” process. The RESET key in Version 1.0 does
an automatic “warmreboot”, atthe end of which you are atthe COMMAND level.
The RESET key spells trouble in either version, of course.

Page 25, top.

The Q(UIT level of the EDITOR does not have a S(AVE option in Version 1.0. This
book does not use the S option, so you will not miss it.

Page 25, middle.
The question “THROW AWAY CHANGES SINCE LAST UPDATE?"” does not
appear. There is no warning that you are about to lose the changes. In other
words, typing Q E in Version 1.0 is the same as typing Q E Y in Version 1.1.
Page 31, question 7.

The question is okay, but the answer for Version 1.0 is different than for Version
1.1.

SESSION 3

Page 36, bottom.
The “version identifier” for the compiler is B2B.

Page 37, top.
The number of “WORDS” left available is 2124. Programs compiled under
Version 1.0 do not take up as much space in the computer as those compiled
under Version 1.1.

Sessions 4, 5, and 6

No differences.

SESSION 7

WARNING: All graphic programs shown in this session and future sessions must
be modified to run correctly under Version 1.0. If they are not modified, they will
leave your computer in “graphic mode” and you will not be able to see anything you
type or anything the computer writes on the Pascal text page. (If this happens, press
the RESET key for a warm reboot.) The needed modification is the addition of a

DIFFERENCES BETWEEN VERSIONS 1.0 AND 1.1 OF APPLE PASCAL 395

TEXTMODE procedure call as the last statement executed by any graphic program,
as shown below.

Page 130, PROGRAM SKETCH.

The last statement of the program must be a TEXTMODE call. The final lines
should look like this:

Page 132, program text at bottom of page.

Change final lines as follows:

Page 135, program text at top and bottom.
Change final lines as on p. 132.
Page 136, program text.

Change final lines to:

UNTIL BUTTON (1)%
E”g‘ =
Page 138; program text.

Change final lines to:

K UNTIL BUTTON (1)4
L4 TEXTMODE
Mo END,

396 APPLE PASCAL

Page 139, paragraph 1, lines 1 and 5.
Change “three” to “four.”
Page 139, paragraph 2, last 3 lines.

Change to “but line K, which ends statement 3, does need a semicolon to
separate it from statement 4.”

Page 141, program text at top.
Change final lines to agree with the change on page 136.
Page 147, program text.

Ditto.

SESSION 8
Page 168, screen messages at top and middle.

No message appears or halt occurs after CTRL-SHIFT-P is pressed, but system
reinitialization does take place as described.

Page 168, screen message at bottom.
The numbers are different from the ones shown.
Page 171, program text.

Change final lines so that the last statement is followed by a semicolon and a call
to TEXTMODE.

SESSION 9

No differences.

SESSION 10
Page 210, 211.

Wherever the book says that -32768 will appear on the screen, instead you will
see --2768. This is a bug in Version 1.0.

DIFFERENCES BETWEEN VERSIONS 1.0 AND 1.1 OF APPLE PASCAL 397

Page 213, bottom insert.

The last two lines of the screen message will be

S% 0y F¥ 255, IF 10812
TYFE <SFACEX TO CONTINUE

Page 214, paragraph 3 and bottom line.

Ignore warning. Follow screen directions and press spacebar forawarm reboot.

SESSION 11
Page 237, 239, program LINE.

Insert a semicolon and the word TEXTMODE after the READLN call.

Page 242, last bold face paragraph.

Due to a bug in Version 1.0, the compiler will fail to detect an error when you
change X to type REAL, but the program will also fail when it is run. You will
probably have to turn off power and reboot.

SESSION 12
Page 269, top.

Yqu may not use the C(opy F(rom file method with version 1.0. Instead, use the
F(ile T(ransfer method given in Section 4.10.

SESSION 13

No differences.

SESSION 14
Pages 339, 342, 346, 348, 355,

In the main BEGIN/END block of each program, the final statement must be
followed by a semicolon and a call to TEXTMODE.

398 APPLE PASCAL

Page 351
Instead of the STACK OVERFLOW message at the bottom of the page, infinite

recursion will cause a catastrophic failure. Your only recovery method is to turn
off the power and reboot.

APPENDIX A

Page 366

At the end of step 4 of the boot-up process, no message appears on the screen.

Proceed with step 5.
Page 367, top.

The “"WELCOME” message is slightly different.

APPENDIX B
Page 373

The “WELCOME"” message is slightly different.

APPENDICES C, D, E

No significant differences.

APPENDIX F

Notes 5, 10, H, and | don’t apply. There is no lower case or reverse video mode.

SOLUTIONS TO PROBLEMS

SESSION 1
1. COMMAND level. FILER. L, V, D.

3. The screen clears and the COMMAND prompt reappears.
5. F V. FILER. Type Q.

7. Type Q.

9. The FILER program is loaded into the main memory. Without APPLEQ: there

would be no place to get the FILER program, and an error message would
appear.

SESSION 2
1.ERETURN ICTRL-CPASCALQU

3. When_there is no workfile on APPLEOQ:, you get the message. When there is a
workfile, no message appears, and acopy of the workfile appears on the screen.

5. Type ESC.

7. Yes. Answer the question by typing N; then Q U.

SESSION 3
1T.EFNY
3 QEFLAPPLEO:RETURN
5. A copy of the buffer goes into the workspace, and the EDIT prompt line appears.

7. Move the cursor to the start of line 2; type D RETURN RETURN CTRL-C.
399

400 APPLE PASCAL

9. Starting on the line below the prompt line, there will appear these two lines:

IT WAS THE BEST OF TIMES,
IT WAS THE WORST OF TIMES.
SESSION 4
1.QEFNYQE

3. Atype conflict occurs whenever a value of one data type appears in astatement
that expects a value of a different, conflicting type.

5. FROGRAM NUMEFERS S
VAR
I 1 INTEGERS$
BEGIN
FOR I $= 1 TO 1% DO
WRITELN (1)
END.

7. Enter the FILER. Type C. Put diskette BLANK: into drive. Type “BLANK:" and
press RETURN. Type “TAXES:” and press RETURN. Put APPLEOQ: indrive. Type

Q.

9. Enter the EDITOR. Type Q W. Insert diskette ABC: into drive. Type
ABC:SONIC.TEXT and press RETURN. Insert APPLEO: into drive. Type E or R.

11. If the line is a Pascal statement and it is to be inserted after another statement,
put the cursor at the end of the latter statement. Type |, a semicolon, and press
RETURN. Type the new line, but do not press RETURN. Type CTRL-C.

13. It is illegal to use a reserved word as a variable name or any other programmer-
defined name. It is legal to use built-in words for variable names, but the words
lose their standard meanings.

15. Any single Pascal statement is a simple statement. A compound statementis a
sequence of two or more simple statements, separated by semicolons, and

bracketed by BEGIN and END. A null statement is a statement containing no
characters.

SESSION 5

1. Assignment, procedure call, and FOR.

SOLUTIONS 401

3. The same number will appear on two successive lines at the left margin each
time. The numbers are 0, 3, 4, 5. There are three statements.

5. If the program contains more than one statement that calls the procedure, then
the body of the procedure would have to be duplicated in each place.

7.a. 1
b. 2-14
c. 16-18

9. TOP is your parent. BOTTOM is your child.

11. HENRY := 5 is okay anywhere. GWEN := 10 is okay for statement 1 or statement 2.
LUKE := 2 is okay for statement 1. HENRY is a global variable.

13. Name .and type are declared in the parameter list in the procedure heading.
Value is passed to it by the call statement parameter.

15. PROCEDURE DIATONIC (KEY § INTEGER)$
BEGIN
NOTE (20 + KEYs FADDLE (1))3
NOTE (22 + KEYy» FADDOLE
NOTE (24 + KEY» .
NOTE (25 + KEYy
NOTE (27 + KEYy
NOTE (29 4+ KEY»
NOTE (31 + KEYy . (
NOTE (32 + KEYy FADDLE (1))

END# (x DIATONIC %)

SESSION 6

1.a.2

b. 3

f.0

g. error

h. error

402 APPLE PASCAL

3. Compute (237 - 37) MOD 7. Ifitis zero, the 237th day is Monday. Ifitis 1, the day
is Tuesday, etc.

5. Seed = 1, Factor = 37

Next-number Next-number x factor
1
3

11

40

48

7. Seed = 43, Factor = 10

Next-number Next-number x factor
43
43
43

Yes. There are “bad factors”.
9. No. Yes. Yes.
11. An assignment statement.
13. FUNCTION FIFTHFWR (N ¢ INTEGER) ¢ INTEGER?
BEGIN

FIFTHFWR $= N % N X N X N % N
END$ (X FIFTHFWR %)

15. Spacebar, RETURN, P, F.

17. Numeric prefix causes an equal number of repetitions. Slash causes repetition
until further moves are impossible.

19.a.JBF/BEGIN/

SESSION 7

1.

SOLUTIONS 403

b.JB2F/BEGIN/

c.JB/F/BEGIN/

Boolean variables may only have two values—true and false. They can be used
with boolean operators, such as OR. Integer variables may have many different
values and can be used with arithmetic operators, such as + and DIV.

- It will halt the program by repeatedly calling the BUTTON function until it

returns the value true.

. Yes.

PROGRAM RNII10OOj

USES
AFFLESTUFF §

BEGIN
REPEAT

WRITELN (RANDOM MOD 101)

UNTIL RBUTTON (0)

END.

PROGRAM RNDRECT $

USES
AFFLESTUFFy TURTLEGRAFHICS}

CONST
WIDTH = 280% HEIGHT = 192

VAR
X1y X2y Y1y Y2 ¢ INTEGERS$

BEGIN
INITTURTLES FILLSCREEN (WHITE)}
REPEAT
X1 = RANDOM MOD WIDTH;
X2 = RANDOM MOD WIDTH#
Y1 ¢{= RANDOM MOD HEIGHTj
Y1 = RANDOM MOD HEIGHT$
FENCOLOR (NONE)$ MOVETO (X1, Y1)}
FENCOLOR (EBLACK)$ MOVETO (X2, Y1)}
MOVETO (X2y Y2)% MOVETO (X1 Y2)3
MOVETO (X1y Y1)35
REPEAT UNTIL EUTTON (0) OR RUTTON (1)
UNTIL BUTTON (1)
END.

404 APPLE PASCAL

11. PROGRAM SKETCH#

USES
AFFLESTUFFy TURTLEGRAFHICSS$

CONST
WIDTH = 280% HEIGHT = 1923

VAR
Xy Yy HALFWIDy HALFHT & INTEGER?

BEGIN
INITTURTLES
FENCOLOR (ELACK) 3§
HALFWID ¢= WIDTH DIV 23
HALFHT ¢= HEIGHT DIV 27
VIEWFORT (Oy HALFWIDy Os HALFHT)S
REPEAT
FILLSCREEN (WHITE)
REPEAT
K b= RANDOM MOD HALFWIDG
Y = RANDOM MOD HALFHTS
MOVETD (Xy YD
UNTIL KUTTON (0) OR RUTTON (1)
UNTIL BUTTON (1)

END.
13. PROGRAM GRIL
USES
AFFLESTUFFy TURTLEGRAFHICSS
CONST
WIDTH = 280% HEIGHT = 192§ STEF = 203
VAR
Xy Y ¢ INTEGER$
BEGIN
INITTURTLE$ FILLSCREEN (WHITE)F X 1= Of
REPEAT

FENCOLOR (NONE)§F MOVETO (Xy 0)3
PENCOLOR (BLACK)§ MOVETO (Xy HEIGHT)#
X = X + STEF -

UNTIL X »= WIDTH?

Y = 0%

REPEAT
FENCOLOR (NONE)§# MOVETO (Oy YO
FENCOLOR (BLACK)3$ MOVETO (WIDTHy Y)#§
Y =Y + STEF

UNTIL Y »= HEIGHT/

REPEAT UNTIL BRUTTON (1)

END.

SESSION 8

1

3.

11

- Improperly typed numbers cause run-time errors that halt the program.

A prior touching of any readable ke
y on the Apple keyboard sets the value of
KEYPRESS to TRUE. Executing a READ or READLN call sets it back to FALSE.

;URN (D) turns D degrees counterclockwise from the current heading;
URNTO (D) sets the current heading to be D degrees counterclockwise from’

the zero-degree direction, which is to the right.

. Yes. The expression after CASE has boolean values TRUE and FALSE, asdo the

case labels.

IF X » 5 THEN
WRITELN (‘/GREATER’)
ELSE
WRITELN (/LESS THAN OR EQUAL ")

a. IF A > O THEN

IF B = O THEN
WRITE (/X7)
ELSE
ELSE
WRITE (Y%)

b.)X

ii) nothing
i) Y

iv) Y

SOLUTIONS 405

406 APPLE PASCAL

13. PROGRAM TOLLEBRIDGE?

VAR
TRUCKy RUSHHOURy CARFOOL ¢ BOOLEANS

FUNCTION YES (QUESTION ¢ STRING) ! BOOLEANF
VAR
ANSWER ¢ CHAR3
BEGIN
WRITE (QUESTION)S READ (ANSWER)#$ WRITELNS
IF ANSWER = ‘Y’ THEN
YES = TRUE
ELSE
YES = FALSE
END# (X YES X)

BEGIN
TRUCK $= YES (‘IS IT A TRUCK? “)#
CARFOOL $= YES (‘3 OR MORE FEOFLE? 7))
RUSHHOUR ¢= YES (/I8 IT RUSH HOUR?)}
IF TRUCK THEN
WRITELN (/TOLL = $1,00")
ELSE IF NOT RUSHHOUR THEN
WRITELN (‘/TOLL = 25 CENTS’)
ELSE IF CARFOOL THEN
WRITELN (’/NO CHARGE")
ELSE
WRITELN ¢(/TOLL = 50 CENTS’)

END.

15. PROGRAM ARBITRARY S

VAR
X 1 INTEGERS?

BEGIN
WRITELN (‘ENTER ANY INTEGER’)$
WRITELN (/AND FRESS RETURN’)#
REAILN (XD
IF (X == 1) AND (X #=20) THEN
BEGIN .
IF X = 1 THEN
WRITELN (Xy “8T7)
ELSE IF X = 2 THEN
WRITELN (Xy ‘ND7)
ELSE IF X = 3 THEN
WRITELN (Xy ‘RD‘)
ELSE
WRITELN (X» “TH’)
END (X% IF X)
END.

SOLUTIONS

17. PROGRAM TEST}

VAR
N1y N2y N3 ! INTEGERS$

BEGIN
WRITELN (/TYFE IN THREE INTEGERS’)j
WRITELN (/SEFARATED RY SFACES.’)$
WRITELN (‘/THEN FRESS RETURN’)}
READLN (N1y N2y N3)j
IF N1 > N2 THEN
IF N2 > N3 THEN
WRITELN (N3y ¢ ‘5 N2y 7 ‘5 N1)
ELSE IF N1 * N3 THEN
WRITELN (N2y 7 ‘» N3y 7 ‘5 N1)
ELSE
WRITELN (N2y 7 ‘5 N1y 7 ’y N3)
ELSE
IF N3 > N2 THEN
WRITELN (N1s 7 ‘9 N2y / ‘5 N3)
ELSE IF N1 » N3 THEN
WRITELN (N3sy 7 7y N1y ‘ ‘y N2)
ELSE
WRITELN (N1, 7 ‘y N3y 7 ‘y N2)
END.

408 APPLE PASCAL
SOLUTIONS 409

19. FPROGRAM FIANOS

SESSION 9
USES ;
AFFLESTUFF § 1. String.
CONST 3. String.
OURATION = 303
5. a.19

VAR
KEY t CHAR3

b.’IS WORTH TWO IN THE BUSH A BIRD IN ’
FITCH ¢ INTEGERS THE HAND

c. 11
BEGIN
REPEAT .

READ (KEY)$ d. 40

CASE KEY OF
‘A’ PITCH = 20 e.0
‘Wt PITCH $= 213
‘g7s FITCH &= 223 ¢ 21
E‘t PITCH = 233
‘hY PITCH = 243 1
EYL PITCH $= 25§ g.
T/t PITCH = 264
‘G’ FITCH = 273 7. a.’BIRD IN THE HAND
Y s PITCH 3= 283
‘H’3 FITCH &= 299 b. 'ISTH TWO IN THE BUSH
‘Ut PITCH = 303
4% FITCH 1= 313 , ’
‘K7t FITCH = 325 c.'A BIN THE HAND
TQ7y YR7y 17y Y07y Ry
IZI, IXI' ICI, ,U/' /B,, 9 BEGIN
‘NYy M7y vty “u7t PITCH $= 0 FIRST FOS (SFACEy FHRASE)S$

END$ (% CASE %) IF A

C WRITELN (COFY (FHRASEs 1y FIRST - 1)}
DELETE (FHRASE, 1y FIRST)
END (X WHILE %)

NOTE (FITCHs DURATION)
UNTIL BUTTON ¢0)
END.

410 APPLE PASCAL ﬁ SOLUTIONS 411
11. PROGRAM COUNTMATCHESSH 3. (I'=integer, L = long integer, R = real, S = string)
VAR
TARGETs SOURCE ¢ STRINGS a.ILR
LTARGy Fy COUNT ¢ INTEGER?
b. ILR
BEGIN
WRITE (’/TARGET PATTERN = ‘)§ READLN (TARGET)# c. L
WRITE (/SOURCE STRING = “)§ READLN (SOURCE)}#
LTARG = LENGTH (TARGET) - 1§ d. bad format
F i= POS (TARGETy SOURCE)$ ‘ orma
COUNT $= 0%
WHILE F = 0 DO e. R
BEGIN
COUNT = COUNT + 1% f. too big
DELETE (SOURCEs 1y F + LTARG)S
F $= FOS (TARGET» SOURCE) g. LR
END# (% WHILE Xx) ’
WRITELN (COUNT» ‘ OCCURRENCE(S)’)
END. h. ILR
i. S
13. Legal statements are: a, c, e, and f. 5. a. ILR
15. Input string is '"ABCDEF’. Output is b. ILR
R c. too big to convert to integer
E
c d. ILR
D
E
e IL
c R
7. a. real
with a leading space in front of the A, 2 spaces in front of the B, etc. b."OOPSI’; X is an 11-digit number, but only the leading 7 digits are kept forany
real number. Adding 1 to X will not affect those 7 digits, so 1E10 and 1E10 + 1
have exactly the same representation in Apple Pascal.
9. ROk
ROK
SESSION 10 ‘%B
, BOR
1.a. 17 ROR
SUE
b. 5 SUE
SUE
SUE
c.5 SUE
d. 2.00000
e. 256

412 APPLE PASCAL SOLUTIONS 413

R

11. FPROGRAM FHTHAGOREANS : e.'Z
USES f. illegal, since a string doesn’t hav i
TRANGCEND b g € a unique successor.
VAR 9P
Ar By C ¢ REALY
h. 1
BREGIN
WRITELN (/TYFE IN THE LENGTHS OF)3 i. -23
WRITELN (/THE TWO FERFENDICULAR SIDES?)s
WRITELN (’/SEFARATED BY A SFACE, THEN‘)G 3.a0
WRITELN (/FRESS RETURN.’)3§ o
WRITELNS
READLN (As E)3 b. 11
WRITELN?
C = SART (A X A + B X RK)§ c. JUL
WRITELN (/LONGEST SIDE HAS LENGTH “y C)3#
END. d. 12, which is legal in Apple Pascal but nonstandard.
e. SEP
f. TRUE
13. FROGRAM RECIFROCAL$
. 5. FUNCTION MONTHNUM (N ¢ INTEGEK) & MONTH3
VAR VAR
Ny NUMBER ¢ INTEGERS? MO ¢ MONTHS
SUM ¢ REALF BEGIN
MO = JANJ
| BEGIN WHILE N * 0 IO
| WRITELN (/ENTER A FOSITIVE INTEGER’)S$ BEGIN
WRITELN ¢(/AND FRESS RE MO $= SUCC (MO)Y3
READLN (NUMBER) § N = N - 1
SUM $= 0 END#
FOR N = 1 TO NUMEER DO MONTHNUM ¢= MO
SUM = SUM + (1 / N)§ END?
WRITELN (/SUM OF RECIFROCALS IS ‘» SUM)
END.,
7.a [1..10]
SESSION 11 b. [1,3,5,7,9]
\
| 1. a1 C. [2, 4,86, 8]
|
| b. 49 (see Appendix F) d. [10]
c. illegal, since real numbers cannot be counted. e. []
d. 48 f. illegal, since 10 is not a set.

414 APPLE PASCAL

9. a. There are 8 possible sets.

b. The value of COINSET tells whether or not each possible member of the setis
an actual member of COINSET.

11. TYPE
MONEY = (FPENNYs NICKEL, DIME, QUARTER)}?
MONEYSET = SET OF MONEYS

FUNCTION CENTS (CHANGE ! MONEYSET) ! INTEGERS
VAR
COIN : MONEY$
SUM ¢ INTEGER#
BEGIN
SUM = 0%
FOR COIN := FENNY TO QUARTER DO
IF COIN IN CHANGE THEN
CASE COIN OF
FENNY ¢ SUM = SUM + 13
NICREL ¢ SUM = SUM + G5i
DIME ¢ SUM = SUM + 107
QUARTER ¢ SUM = SUM + 28
END# (X% CASE x)
CENTS = SUM
END$ (X CENTS X)

13. VAR
ALLy MWFy TTH» SSU ¢ SET OF DAYOFWEEKS$

SESSION 12
1. a. PRICE and COST
b. ARRAY
c. FIRST..LAST
d. REAL
3. a. Nothing

b. A “value range error” would be reported at run time when the firstassignment
statement was executed.

c. A compile-time error would occur, since the dimensions must be declared in
ascending order.

SOLUTIONS 415

5. FROCEDURE REVERSEUECKS
VAR
Iy v TEMFP ¢ INTEGEFRS
BEGIN
FOR I != 1 TO NUMCARDS DIV 2 Do
BEGIN

Jot= NUMCARDS ~ 1 4+ 15
TEMF = DECK LIl
DECK LI ¢= DECK [J13
DECK [J1 = TEMF
END (k FOR %)
END? (X REVERSEUECK %)

7. The WRITELN statement in SHOWDECK would have to be changed to

WRITELN (FACE CFACENUMEERI, < OF ‘5, SULT CSULTNUMEERT)

In addition, INITIALIZE would need 13 new assigment statements to give proper

string values to array FACE. Finally, the VAR block would need the following
new declaration:

FACE ¢ ARRAY [1..131 OF STRING [51%

9. PROCEDURE SORTHANIS

VAR
Hy Iy Jy TEMF ! INTEGERS$
BEGIN
FOR H != 1 TO NUMHANDS DO
FOR I = 1 TO SIZEHAND' - 1 DO
FOR J := 1 + 1 TO SIZEHAND DO
IF HANDS [Hs 11 > HANDS [Hy JI1 THEN
BEGIN
TEMF t= HANDS L[H, 11}
HANDS [Hy I1 i= HANDS C[H» JI13
HANDS [Hy J1 = TEMF
END (X% IF x)
END} (X SORTHANDS X)

416 APPLE PASCAL

11. a. 999, since X is a global variable and ABC changed its value.
b. A compile-time error message appears, complaining that the X in the main
BEGIN/END block is “undeclared”. This happens because the only VAR block is
the local one inside ABC.

c. 0 appears now, because the two X's are different. ABC affects only its own,
local X, while the main program affects only the gobal X.

13. a. INTEGER, CHAR, BOOLEAN, any programmer defined scalar data type.
b. Any data type discussed so far, including ARRAY. For example, if C were a
one-dimensional array and A were two-dimensional, then the statement would
assign all components of C to one “row” of A.

15. a. LIST may be a value parameter, but AVG and STDEV may not.

b. All three may be defined as reference parameters.

17. a.

TYFE
STRINGARRAY L1..501 OF STRING L2013
FUNCTION FOSITION (TARGET ¢ STRING [201% LIST ¢
STARTy FINISH ¢ INTEGER) 3 INTE

VAR
I ¢ INTEGERS
FOUND ¢ BOOLEANS
BEGIN
FOSITION &= -MAXINTS
FOUND $= FALSES
I = STARTSH
WHILE I <= FINISH AND NOT FOUND DO
BEGIN
IF TARGETYT = LIST LIJ THEN
BEGIN
FOSITION = I}
FOUND = TRUE?
END$ (X IF x)
I = I+1
END Ok WHILE %)
END$ (X FOSITION %)

b. No. Itwould be necessary to declare en entire new function with parameters of
type INTEGER and ARRAY of INTEGER.

Rl T —"

T

SOLUTIONS 417
SESSION 13

1. TYPE
WORKERLIST = ARRAY [1.,NUMWORKEKSI OF
RECORD
NAME ¢ STRING#

SSNUM ¢ INTEGER [101]
END}

If EMPLOYEE is of type WORKERLIST, then EMPLPOYEE [87]. SSNUM is the
social security number of the 87th employee.

3. TYPE
STUREC = RECORD
IO ¢ INTEGERj
NAME ! RECORD
FIRST ! STRING [2013
LAST ! STRING [20]
END (k INNER RECORD %)
END} (% OUTER RECORD %)

5. For output:

REWRITE (STUFILE, ‘disk file name’)
CLOSE (STUFILE, LOCK)

For input:

RESET (STUFILE, ‘disk file name’)
CLOSE (STUFILE)

7. No, it is undefined.

9. The first statement assigns the value 23 to the current component of QUTFILE
The second statement sends that value to the output file opened as OUTFILE'
The third statement sends that same value (23) to the output file. The result is;
that the output file will have the value 23 in two successive locations.

11. For INTERACTIVE files, RESET does not do an automatic GET, so DATAFILEA
is undefined at the start. If the file is empty, EOF (DATAFILE) remains false until
after the first GET. Therefore, the first character on the screen would be
spurious. The rest (if any) would be correct.

418 APPLE PASCAL

13. PROGRAM READITj

VAR
COMFONENT ¢ STRING#
INFILE 3 TEXT#

BEGIN
RESET (INFILE» ‘disk file name’)}#
WHILE NOT EOF (INFILE) DO
BEGIN
REAULN (INFILEy COMFONENT) S
WRITELN (COMFONENT)
END§ (X WHILE %)
CLOSE (INFILE)

END.
SESSION 14
1. FUNCTION SERIES (NUM ¢ INTEGER) : REAL}#
BEGIN
IF NUM = 1 THEN
SERIES = 1
ELSE
SERIES = SERIES (NUM - 1) + 1 / NUM
END# (% SERIES X)
3. PROCEDURE SNOWFLAKE (SIZEs LEVEL ! INTEGER)}#
VAR
NEWSIZE ¢ INTEGER#
BEGIN

IF LEVEL = O THEN
MOVE (SIZE)
ELSE
BEGIN
NEWSIZE = ROUND (SIZE / 3)3#
SNOWFLAKE (NEWSIZE, LEVEL - 1)7
TURN (460)3%
SNOWFLARE (NEWSIZE, LEVEL - 1)3%
TURN (~120)3%
SNOWFLLAKE (NEWSIZE, LEVEL - 1)#
TURN (60)3
SNOWFLAKE (NEWSIZE, LEVEL -~ 1)
END (X IF X)
END# (X SNOWFLAKE %)

PROCEDURE DIAMOND (SIZE ¢ INTEGER)$
VAR

I ¢ INTEGERS$

BEGIN

IF SIZE » 1 THEN
BEGIN
FOR I (= 1 TO 4 DO
BEGIN
MOVE (SIZE) 3§
TURN (90)
END? (x FOR x)
MOVE (SIZE DIV 2)3%
TURN <4554

SOLUTIONS 419

ODIAMONIN (TRUNC (SIZE % 0.707))

END (% IF X)

END# (X DIAMOND %)

PROCEDURE TRIANGLE (SIZE ¢ INTEGER)}#
FORWARD #

PROCEDURE SQUARE (SIZE ! INTEGER)3$

VAR
I

¢ INTEGER3#

BEGIN
IF SIZE > 1 THEN

BEGIN
FOR I ¢= 1 TO 4 DO
BEGIN
MOVE (SIZE)}#
TURN (90)
END# (x FOR X)

FENCOLOR (NONE)$# MOVE (SIZE DIV 10)3

TURN (90)% MOVE (SIZE DIV 10)3
FENCOLOR (WHITE)S$

TRIANGLE (SIZE % 8 DIV 10)

END (X% IF X%)

END$ (% SQUARE X)

PROCEDURE TRIANGLES#

VAR
I

¢ INTEGER#

BEGIN

IF SIZE » 1 THEN
BEGIN
FOR I =1 T0 3 DO
BEGIN

ENDj’

MOVE (SIZE)j
TURN (120)
ENDF (X FOR X%)

TURN (~920)3%

FENCOLOR (NONE) 3§ MOVE (SIZE DIV 3)j

TURN (90)3 MOVE (SIZE DIV 10)5
FENCOLOR (WHITE)§

SQUARE (SIZE DIV 3)

END (x IF X)

(X SQUARE X))

TURN (~90) 3%

INDEX

INDEX

A(djst indentation 68
ABS function 220, 222, 224
Algorithms

Scan 200, 276

Shufiie 286-287

Sort 277-280
AND operator 164, 169
APPLESTUFF unit 57
Arithmetic 216-226

Integer 216-221

Long integer 221-222

On sets 257-258

Order of operations 220

Real number 222-226

Recursive 335
Arrays 267-300
ARRAY data type 271-274
ASCII character set 387-390
Assignment statement 58, 62-63, 289
ATAN function 226

Base type of set 258
BEGIN 35, 47, 69, 162, 201
BOOLEAN data type 134, 154-156, 201, 244-
246
Booting up 11
One drive 366
Two drives 372
Branching control structures
CASE statement 169-172, 246, 283
IF statement 151-166
Buffer 27-28, 84-85
Built-in words 62, 378
Constants
FALSE 155, 167, 245
MAXINT 210
SCREENCOLORSs 237-241, 247-248
TRUE 155, 245
Functions
ABS 220, 222, 224
ATAN 226
BUTTON 132, 134
CHR 244, 387
CONCAT 186-188
COPY 190-191
COsS 226
EOF 317
EOLN 321
EXP 226
KEYPRESS 171

LENGTH 183-185

LN, LOG 226

ORD 242-248, 387

PADDLE 64, 115, 130

POS 188-190

PRED 242

PWROFTEN 225

RANDOM 107

ROUND 224, 225, 230

SIN 226

SQR 220, 222, 224

SQRT 226

SUCC 242

TRUNC 224, 225, 230
Procedures

CLOSE 312, 314, 317

DELETE 191-192

FILLSCREEN 135

GET 316, 317, 320, 326

GRAFMODE 144

INITTURTLE 130, 152-153

MOVE 171-172

MOVETO 130-131

NOTE 57-69

PENCOLOR 130, 132

PUT 314, 322-323

RANDOMIZE 109

READ 152, 156, 167-169, 320-328

READLN 152, 167-169, 320-328

RESET 316-318, 320, 326

REWRITE 313, 315

TEXTMODE 144

TURN 171-173

TURNTO 171-173

VIEWPORT 143

WRITE 44, 320-324

WRITELN 37, 44, 65, 320-324
Types

BOOLEAN 134, 154-156, 201, 244-246

CHAR 152, 196-197

INTEGER 58, 210, 216-220, 230

INTERACTIVE 325-329

REAL 213-215, 222-231

Scalar data 237-266

SCREENCOLOR 237-241, 247-248

STRING 181-183, 195-197

TEXT 320-324
Units

APPLESTUFF 57

TRANSCEND 226

423

424 INDEX

TURTLEGRAPHICS 130, 152
Variables
INPUT 328
KEYBOARD 328
OUTPUT 328
BUTTON function 132, 134

C(hange disk/file name 73
C(opy
B(uffer 84-85
F(rom file 269
Call by reference 192-193, 291-293
Call by value 192-193, 291-293
CASE statement 169-172, 246, 283
CHAR data type 152, 196-197, 387
Character set, ASCII 387-390
Characters in strings 196
CHR function 244, 387
Clearing workfile 34
CLOSE function 312, 314, 317
COMMAND level 12, 382
Commands, Apple Pascal system 379-381
Comment fields 116-117
Compiling 37
Compile time errors 41
Compound statement 69
CONCAT procedure 186-188
CONST block 141, 240-241
Constants 139-143, 183, 240-241, 245
FALSE 155, 245
MAXINT 210
SET 258
TRUE 155, 245
Conversion, numeric 230
COPY function 190-191
Copying diskettes
One drive 368
Two drives 374
COS function 226
Counting nested statements 138
CTRL-@ 168
CTRL-A 12, 120
CTRL-C 24, 39, 68
CTRL-L 38, 68
CTRL-O 38, 68
CTRL-S 72
CTRL-Z 120
Cursor moving keys 38, 89, 119-120

D(ate setting 14
D(lete old text 39
Data, range of values 383
Data types
ARRAY 271-274
Component type 272
Dimension 272-273
BOOLEAN 134, 154-156, 201, 244-246
CHAR 152, 196-197

FILE 311-334
Component 313, 317, 319
INTEGER 58, 210, 216-220, 230
INTERACTIVE file 325-329
Long integers 211-213, 221, 230
MUSICNOTE 247-251
REAL 213-215, 222-231
RECORD 301-311
Component types 303, 306
Scalar data 237-266
SCREENCOLOR 237-241, 247-248
SET 253-259
Base type 259
STRING 181-183, 195-197
TEXT file 320-324
DELETE procedure 191-192
Disk controller card 365, 372
Disk drives
One drive startup 365
Boot-up 366
Formatting blanks 367
Copying diskettes 368
Converting to dual drive 391-392
Two drive startup 371
Boot-up 372
Formatting blanks 373
Copying diskettes 374
Converting to single drive 376
Disk files 26, 72-75, 269, 312-325
Diskettes, Pascal System
APPLEO: 12, 366, 391-392
APPLE1: 372, 391-392
APPLE2: 372
APPLE3: 11, 366, 367
Dimension of array 272-273
Dimension of page
Graphic 384
Text 384
DIV operator 70
DOWNTO 83
Duplicating text 83-85

E(dit level 20, 119, 380
A(djst indentation 68
C(opy

B(uffer 84-85

F(rom file 269
D(lete old text 39
F(ind pattern 120
I(nsrt new text 22
J(ump cursor 89
P(age cursor 119
Qfuit EDITOR 24

E(xit 25

R(eturn to EDITOR 25

U(pdate workfile 25

W(rite file 74
X(chng 120

Cursor moving keys 38, 89, 119-120
Set direction 119-120

E(xtended disk directory 320

Editing, overview 27

ELSE IF branching 164-165

END 35, 47, 69

EOF function 317

EOLN function 321

Errors, fixing typing 41

Errors at compile time 41, 59
Assignment to constant 142, 239
MOD of long integer 222
Real number format 223
Reserved word used as name 60
Scope error 93
Semicolon missing 46, 85
Semicolon in IF statement 157, 162
Spaces in reserved word 41
Type conflict 63, 184, 187, 196, 230
Undeclared name 93, 143, 350
USES declaration missing 143

Errors at run time
Array subscript 271
Division by zero 110
Floating point error 213
Input format 168
Long integer overflow 212
Real number overflow 213
Real number underflow 214
Round-off 228
Stack overflow 351

ESC key 23, 39

ETX and CTRL-C 24, 39, 68

EXP function 226

F(iler 13, 381
C(hange name 73
D(ate setting 14
E(xtended directory 320
K(runch files 325
L(ist disk directory 15
N(ew workfile 34
Q(uit 15
R(emove files 329
T(ransfer files 75
V(olumes on line 14
F(ind pattern 120
FALSE 155, 167, 245
FILE data type 311-334
FILLSCREEN procedure 135
Floating-point numbers 213-215, 222-231
FOR statement 67-70, 83, 201-202, 250
Formatted output 217
Formatting blank diskettes
One drive 367
Two drives 373
FORWARD statement 350-351

INDEX

Functions 65-67, 107-115, 155

(see Built-in words)

FUNCTION block 111

Mathematical 222, 226

Recursive 335-339

Useful examples in book
RND, random integers in a range 117
SUM, recursion 337
YES, yes/no boolean 159

Gauss, Karl Friedrich 338
GET procedure 316, 317, 320, 326
Getting programs from disk 74-75
Global scope 92-99
GRAFMODE procedure 144
Grammar rules of Pascal
Arithmetic 220
ARRAY data 271-274
CASE statement 170-171
Comment block 116
CONST block 141
FILE data 319
FOR statement 69, 83, 201-202
FUNCTION block 111
IF statement 165-166
Parameters 289-293
PROCEDURE block 97-99
RECORD data 306-308
Recursion 337, 351
REPEAT statement 132-134
Scalar data 251
Scope of names 98-99
Semicolons 46, 157
SET data 255, 258
Spaces and RETURN 47
TYPE block 252-253
Variables 63
WHILE statement 201
WITH statement 305
Graphic output 129-148, 171-173

Hierarchy of arithmetic 220
Horizontal scrolling 120
I(itialize warm reboot 75
I(nsrt new text 22, 39
Identifiers 59-62, 377-378
IF statement 151-166
Identation 68, 138, 164-165
Initialization of variables 215
INITTURTLE procedure 130, 152-153
Input 64-66
File 315-318, 320-323
Keyboard 152, 156, 167-169
Paddle input 64, 115, 130
INPUT file variable 328
Insert/delete buffer 27-28, 84-85
INTEGER data type 58, 210, 216-220, 230
INTERACTIVE file 325-329

425

426 INDEX

J(ump cursor 89

K(runch files 325
KEYBOARD file variable 328
KEYPRESS function 171

L(ist disk directory 15
Language System, Apple Pascal 365
LENGTH function 183-185
LN, LOG functions 226
Local scope 92-99
Long integers 211-213, 221, 230
Loop control structures
FOR statement 67-70, 201-202, 250
REPEAT statement 132-134, 167
WHILE statement 200-202
Lowercase characters 388-390

Mathematical functions 220, 226
Maximum data values 383
Maximum long integer 213
Maximum real number 214
MAXINT 210

Memory size limits 384-385
Mixed-mode arithmetic 230
MOD operator 109

Modular programming 96-97, 274-276, 280-282
MOVE procedure 171-172
MOVETO procedure 130-131
Music 57-69, 82-95, 247-251
MUSICNOTE data type 247-251
Mutual recursion 345-355

N(ew workfile 34
Names 59-62, 377-378
Nesting
Counting statements 138
FOR Loops 71
IF statements 158-163
REPEAT loops 136
NOTE procedure 57-69
NOT operator 164, 256
Null statement 71
Numeric data types 209-232

OBOB, the Off-By-One Bug 114, 195, 198, 252,
284
Operators
AND 164, 169
DIV 70
MOD 109
NOT 164, 257
OR 137, 169
Relational 169, 256, 258, 289
OR operator 137, 169
ORD function 242-248, 387

Output
Formatting 217
Graphic 129-148, 171-173
Sound 57-69
OUTPUT file variable 328
Overview of editing 27

P(age cursor 119
Paddle controls 64-66, 115, 130
PADDLE function 64, 115, 130
Parameters 90-95
Arrays as 289-293
Value vs. reference 192-193, 291-293
PENCOLOR procedure 130, 132
POS function 188-190
PRED function 242
Procedures 57, 81-99
(See Built-in words)
PROCEDURE block 87, 97
Recursive calls 339-357
Mutual recursion 345-355
Useful examples in book
ADDCOLOR, random colors 354
BOX, draws rectangle 147
DOREMI, chromatic scale 255
DOWN, musical scale 88, 91, 94
DRAGON, recursive dragon curve 343
FILL, draws solid rectangle 354
GETAPHRASE, input from keyboard 279
HORIZONTAL, mutual recursion 355
MAKEDECK, issues deck of cards 288
PLAY, using MUSICNOTE data 255
SCAN, scans words from string 279
SHOWDECK, outputs current cards 288
SHOWLIST, string array output 279
SHUFFLEDECK, shuffles array 288
SORT, alphabetic sort 280
SQUARE, recursion 340
UP, musical scale 88, 91, 94
VERTICAL, mutual recursion 355
WRITETRUTH, boolean output 246
PROGRAM 35
Programs in book
(see Functions and Procedures)
ADDEM, recursive addition 336-337
BOXES, random graphics 147
CALCULATOR, four-function 167, 170
CALENDAR, uses records 303, 305
CARDGAME, uses numeric arrays 282, 287-
289
CONFLICT, numeric type conflicts 230
DICEGAME, model program 5, 48
DICTIONARY, word-processing 279
DRAGONCURVE, graphic recursion 342
DRIVER, graphic game 171, 172
FILEIT, file /0 312, 315-318, 320-322, 325
FINDAVERAGE, uses real numbers 227
GUESS, uses string procedures 207

KEYCHECK, uses sets for input test 258
MONDRIAN, recursive graphics 346, 348,
354-355
MUSIC, uses scalar data 248-250, 255
NOISE, random music 117
ORDER, of arithmetic 216, 221, 222
QUESTION, uses nested IF 155, 159
SCALAR, tests scalar property 242-246
SCALES, music with FOR statement 91
SCANNER, word-processing 200, 268-269,
276

SENTENCE, uses string procedures 194
SIZE, tests numeric data limits 210
SKETCH, random graphics 141
SOUND, paddle input 71
SQUARES, recursive graphics 339
TEST, precision of real numbers 228
TINY, smallest program 35
WORDS, uses string procedures 181-191
WRITEIT, simple screen output 44

PUT procedure 314, 322-323

PWROFTEN function 225

Q(uit EDITOR 24
Q(uit FILER 15
Question mark 16

R(emove disk files 329
R(un a program 36
RANDOM function 107
RANDOMIZE procedure 109
READ procedure 152, 156, 167-169, 387
READLN procedure 152, 167-169
READ and READLN from files 320-328
REAL numbers 213-215, 222-231
RECORD data type 301-311
Recursion 335-358
Infinite 351
Reference books 360-362
Relational operators 169, 244, 251, 256, 258,
289
Remark fields 117-118
REPEAT statement 132-134, 167
Reserved words 60, 378
AND 164, 169
ARRAY/OF 271-274
BEGIN/END 35, 47, 69, 162, 201
CASE/OF 169-172, 246, 283
CONST 141
DIV 70
FILE/OF 311-334
FOR/TO/DOWNTO/DO 67-70, 83, 201-202,
250
FORWARD 350-351
FUNCTION 111
IF/THEN/ELSE 151-166
IN 255-258
MOD 109

INDEX 427

NOT 164

OR 137, 169

PROCEDURE 87, 97

PROGRAM 35

RECORD/END 301-311

REPEAT/UNTIL 132-134, 167

SET/OF 253-259

TYPE 248, 252-253

USES 57

VAR 58, 292

WHILE/DO 200-202

WITH/DO 305
RESET key 12, 23
RESET procedure 316-318, 320, 326
Retrieving programs from disk 74-75, 269
REWRITE procedure 313, 315
ROUND function 224, 225, 230
Round-off errors 228

Saving programs on disk 72, 118
Scalar data types 237-266
SCREENCOLOR data 237-241, 247-248
Scope of names 92-99
Semicolon usage 45-48, 85, 130, 138-139, 157,
162
SET data type 253-259
Set cursor direction 119-120
SIN function 226
Size limits 383-385
Sound generation 57-69, 247-251
SQR function 220, 222, 224
SQRT function 226
Statements
Assignment 58, 62-63, 289
CASE 169-172, 246, 283
Compound 69
FOR 67-70, 83, 201-202, 250
FORWARD 350-351
IF 151-166
Null 71
Procedure call 81, 86-91
REPEAT 132-134
WITH 305
WHILE 200-202
STRING data type 182-183, 195-197
String procedures 181-195
Subscript 271
Subrange 273
SUCC function 242

Syntax rules — see Grammar
SYSTEM.WRK.CODE 38
SYSTEM.WRK.TEXT 26, 320-322
System commands 379-381

see E(dit level, F(iler

TEXT file 320-324
Text lines in programs 42
TEXTMODE procedure 144

428 INDEX

Top-down programming 274-276, 280-282
TRANSCEND unit 226

TRUE 155, 245

TRUNC function 224, 225, 230

TURN procedure 171-173

TURNTO procedure 171-173
TURTLEGRAPHICS unit 130, 152, 248
Type (see Data types) 63

TYPE block 248, 252-253, 308

Type conflict 63, 230

Uninitialized variables 215, 271
User engineering 137

USES block 57

V(olumes on line 14

VAR block 58

VAR parameters 292

Value 63, 192-193

Variables 58-63, 152, 154
Initialization 215
Scope rules 92-99
Version 1.0 of Pascal System 393
VIEWPORT procedure 143

WHILE statement 200-202

Window control 12, 120, 144

Wirth, Niklaus 361, 362

WITH statement 305

Workfile 25-28, 34

Workspace 23, 24-28

WRITE procedure 44, 387

WRITELN procedure 37, 44, 65, 238, 245, 271
WRITE and WRITELN to files 320-324

X(chng text 120

COMPILER ERROR MESSAGES

COMPILER ERROR MESSAGES

OO s WD =

. Error in simple type

. ldentifier expected

. ‘PROGRAM’ expected

. ') expected

1 " expected

. lllegal symbol (possibly missing *;’ on line

above)

. Error in parameter list

. ‘OF' expected

. (" expected

. Errorin type

. ' expected

. ' expected

. 'END' expected

. '/ expected (possibly on line above)
. Integer expected

. '=" expected

: ‘BEGIN' expected

. Error in declaration part

. Error in <field-list>

. expected

1 " expected

. ‘Interface’ expected

. ‘Implementation’ expected
: 'Unit’ expected

. Error in constant

. 1 =" expected

. 'THEN' expected

1 ‘UNTIL’ expected

. ‘DO’ expected

: “TO' or ‘'DOWNTO’ expected in for statem-

ent

. 'IF" expected

. 'FILE’ expected

. Error in <factor> (bad expression)

. Error in variable

. ldentifier declared twice

. Low bound exceeds high bound

. ldentifier is not of the appropriate class
. Undeclared identifier

: Sign not allowed

: Number expected

. Incompatible subrange types

. File not allowed here

. Type must not be real

: <tagfield> type must be scalar or subrange
. Incompatible with <tagfield> part

Index type must not be real

Index type must be a scalar or a subrange
Base type must not be real

Base type must be a scalar or a subrange
Error in type of standard procedure par-
ameter

17:
118:

119:

120:

121:
122

123:
124:
125:

126:

127:
128:
129:
130:
131:
132
133:
134:
135:
136:

137:
138:
139:

140:
141
142:
143:
144:
145:
146:
147:

148:
149:
150:

151:

152
153:
154:
155:

156:
157:

Unsatisfied forward reference

Forward reference type identifier in vari-
able declaration

Re-specified params not OK for a forward
declared procedure

Function result type must be scalar, sub-
range or pointer

File value parameter not allowed

A forward declared function’s result type
can't be re-specified

Missing result type in function declaration
F-format for reals only

Error in type of standard procedure par-
ameter

Number of parameters does not agree with
declaration

Illegal parameter substitution

Result type does not agree with declaration
Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be boolean

Set element type must be scalar or subran-
ge

Set element types must be compatible
Type of variable is not array

Index type is not compatible with the
declaration

Type of variable is not record

Type of variable must be file or pointer
lllegal parameter solution

Illegal type of loop control variable

Illegal type of expression

Type conflict

Assignment of files not aliowed

Label type incompatible with selecting
expression

Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not
allowed

Assignment to formal function is not allo-
wed

No such field in this record

Type error in read

Actual parameter must be a variable
Control variable cannot be formal or non-
local

Multidefined case label

Too many cases in case statement

1568:
159:
160:
161:
162:
163:
164:

165:
166:
167:
168:
169:
170:
171:
172:
174:
175:

182:
183:

184:

185:
186:
187:
188:

189:
: Unit not in library
191:
192
193:
194:
195:

201:

No such variant in this record

Real or string tagfields not allowed
Previous declaration was not forward
Again forward declared

Parameter size must be constant

Missing variant in declaration
Substitution of standard proc/func not
allowed

Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Standard file was re-declared

Undeclared external file

Pascal function or procedure expected
Actual parameter max string length <
formal Max length

Nested units not allowed

External declaration not allowed at this
nesting level

External declaration not allowed in inter-
face section

Segment declaration not allowed in unit
Labels not allowed in interface section
Attempt to open library unsuccessful

Unit not declared in previous uses declara-
tion

‘Uses’ not allowed at this nesting level

No private files

‘Uses’ must be in interface section

Not enough room for this operation
Comment must appear at top of program
Unit not importable

Error in real number — digit expected

202:

203:
204:
250:
251:
252:

253:
254:
256:
257:
258:
259:
300:
301:
302:
303:
304:
350:
351:
352:
353:
354:
398:
399:
400:
401:
402:
4083:
404:
405:
406:
407:
408:
500:

String constant must not exceed source
line

Integer constant exceeds range

8 or 9 in octal number

Too many scopes of nested identifiers
Too many nested procedures or functions
Too many forward references of procedure
entries

Procedure too long

Too many long constants in this procedure
Too many external references

Too many externals

Too many local files

Expression too complicated

Division by zero

No case provided for this value

Index expression out of bounds

Value to be assigned is out of bounds
Element expression out of range

No data segment allocated

Segment used twice

No code segment allocated

Non-intrinsic unit called from intrinsic unit
Too many segments for Seg Dictionary
Implementation restriction
Implementation restriction

lllegal character in text

Unexpected end of input

Error in writing code file, not enough room
Error in reading include file

Error in writing list file, not enough room
Call not allowed in separate procedure
Include file not legal

Too many libraries

(*$S+") needed to compile units

General assembler error

|a hands-on approach

| Arthur Luehrmann
Herbert Peckham

D2L0014
950-0053 0-07-049173-9

L v S o e i e SR

